Skip to main content
Log in

Foetal skin cells in wound healing: a promising tool for clinical application

  • Review
  • Published:
European Journal of Dermatology

Abstract

The skin is the first protective barrier of our body. Wound healing is therefore an essential mechanism. However, this phenomenon can be impaired when wounds are too large or chronic, for example, in diabetes. Interestingly, adult skin heals with scars, whereas foetuses present scarless regeneration. The objective of this review is to highlight the difference in healing pathways between foetal and adult skin and to present the recent therapeutic strategies envisaged using foetal properties in the clinic. The main features that distinguish foetal wound healing from adult wound healing are less tissue inflammation, faster reepithelialisation, and less contraction of the neodermis, allowing foetal tissues to regenerate. Recently, new therapies in regenerative medicine have been introduced using these foetal properties. For the first time, our team has developed CICAFAST, an innovative dressing composed of foetal keratinocytes and fibroblasts, which has been tested on a skin graft donor site in a clinical Phase 1/2 trial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brigham PA, McLoughlin E. Burn incidence and medical care use in the United States: estimates, trends, and data sources. J Burn Care Rehabil 1996; 17: 95–107.

    Article  CAS  PubMed  Google Scholar 

  2. US Markets for Wound Management Products. Irvine, Calif: Medical Data International, 1997.

  3. Peck MD. Epidemiology of burns throughout the world. Part I: Distribution and risk factors. Burns 2011; 37: 1087–100.

    Article  PubMed  Google Scholar 

  4. Asif B, Rahim A, Fenner J, et al. Blood vessel occlusion in periburn tissue is secondary to erythrocyte aggregation and mitigated by a fibronectin-derived peptide that limits burn injury progression. Wound Repair Regen 2016; 24: 501–3.

    Article  PubMed  Google Scholar 

  5. Rennekampff H-O, Hansbrough JF, Kiessig V, Doré C, Sticherling M, Schröder JM. Bioactive interleukin-8 is expressed in wounds and enhances wound healing. J Surg Res 2000; 93: 41–54.

    Article  CAS  PubMed  Google Scholar 

  6. Petreaca ML, Yao M, Liu Y, DeFea K, Martins-Green M. Transactivation of vascular endothelial growth factor receptor-2 by interleukin-8 (IL-8/CXCL8) is required for IL-8/CXCL8-induced endothelial permeability. Mol Biol Cell 2007; 18: 5014–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Conus S, Perozzo R, Reinheckel T, et al. Caspase-8 is activated by cathepsin D initiating neutrophil apoptosis during the resolution of inflammation. J Exp Med 2008; 205: 685–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Sindrilaru A, Peters T, Wieschalka S, et al. An unrestrained proinflammatory M1 macrophage population induced by iron impairs wound healing in humans and mice. J Clin Invest 2011; 121: 985–97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ishida Y, Gao J-L, Murphy PM. Chemokine receptor CX3CR1 mediates skin wound healing by promoting macrophage and fibroblast accumulation and function. J Immunol 2008; 180: 569–79.

    Article  CAS  PubMed  Google Scholar 

  10. Leibovich SJ, Ross R. The role of the macrophage in wound repair. Am J Pathol 1975; 78: 71–100.

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Chrissouli S, Pratsinis H, Velissariou V, Anastasiou A, Kletsas D. Human amniotic fluid stimulates the proliferation of human fetal and adult skin fibroblasts: the roles of bFGF and PDGF and of the ERK and Akt signaling pathways. Wound Repair Regen 2010; 18: 643–54.

    Article  PubMed  Google Scholar 

  12. Gao Z, Sasaoka T, Fujimori T, et al. Deletion of the PDGFR-beta gene affects key fibroblast functions important for wound healing. J Biol Chem 2005; 280: 9375–89.

    Article  CAS  PubMed  Google Scholar 

  13. Barrientos S, Brem H, Stojadinovic O, Tomic-Canic M. Clinical application of growth factors and cytokines in wound healing. Wound Repair Regen 2014; 22: 569–78.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Levenson SM, Geever EF, Crowley LV, Oates JF 3rd LV, Berard CW, Rosen H. The healing of rat skin wounds. Ann Surg 1965; 161: 293–308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Whitby DJ, Ferguson MWJ. The extracellular matrix of lip wounds in fetal, neonatal and adult mice. Development 1991; 112: 651–68.

    CAS  PubMed  Google Scholar 

  16. Iocono JA, Ehrlich HP, Keefer KA, Krummel TM. Hyaluronan induces scarless repair in mouse limb organ culture. J Pediatr Surg 1998; 33: 564–7.

    Article  CAS  PubMed  Google Scholar 

  17. Garg HG, Berg RA, Silver FH. Effect of proteoglycans on type I collagen fibre formation. Biomaterials 1989; 10: 413–9.

    Article  CAS  PubMed  Google Scholar 

  18. Garg HG, Siebert EP, Swann DA. Isolation and some structure analyses of a copolymeric chondroitin sulfate-dermatan sulfate proteoglycan from post-burn, human hypertrophic scar. Carbohydrate Res 1990; 197: 159–69.

    Article  CAS  Google Scholar 

  19. Rowlatt U. Intrauterine wound healing in a 20-week human fetus. Virchows Arch A Pathol Anat Histol 1979; 381: 353–61.

    Article  CAS  PubMed  Google Scholar 

  20. Adzick NS, Longaker MT. Animal models for the study of fetal tissue repair. J Surg Res 1991; 51: 216–22.

    Article  CAS  PubMed  Google Scholar 

  21. Mast BA, Diegelmann RF, Krummel TM, Cohen IK. Scarless wound healing in the mammalian fetus. Surg Gynecol Obstet 1992; 174: 441–51.

    CAS  PubMed  Google Scholar 

  22. Larson BJ, Longaker MT, Lorenz HP. Scarless fetal wound healing: a basic science review. Plast Reconstr Surg 2010; 126: 1172–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Walraven M, Talhout W, Beelen RHJ, van Egmond M, Ulrich MMW. Healthy human second-trimester fetal skin is deficient in leukocytes and associated homing chemokines: leukocytes and chemokines in fetal skin. Wound Repair Regen 2016; 24: 33–541.

    Article  Google Scholar 

  24. Cowin AJ, Brosnan MP, Holmes TM, Ferguson MWJ. Endogenous inflammatory response to dermal wound healing in the fetal and adult mouse. Dev Dynamics 1998; 212: 385–93.

    Article  CAS  Google Scholar 

  25. Olutoye OO, Zhu X, Cass DL, Smith CW. Neutrophil recruitment by fetal porcine endothelial cells: implications in scarless fetal wound healing. Pediatr Res 2005; 58: 1290–4.

    Article  PubMed  Google Scholar 

  26. Kieran I, Knock A, Bush J, et al. Interleukin10 reduces scar formation in both animal and human cutaneous wounds: results of two preclinical and phase II randomized control studies. Wound Repair Regen 2013; 21: 428–36.

    Article  PubMed  Google Scholar 

  27. Burger B, Kühl CMC, Candreva T, et al. Oral administration of EPA-rich oil impairs collagen reorganization due to elevated production of IL-10 during skin wound healing in mice. Sci Rep 2019; 9: 9119.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Wulff BC, Pappa NK, Wilgus TA. Interleukin-33 encourages scar formation in murine fetal skin wounds. Wound Repair Regen 2019; 27: 19–28.

    Article  PubMed  Google Scholar 

  29. Wulff BC, Parent AE, Meleski MA, DiPietro LA, Schrementi ME, Wilgus TA. Mast cells contribute to scar formation during fetal wound healing. J Invest Dermatol 2012; 132: 458–65.

    Article  CAS  PubMed  Google Scholar 

  30. Khosravi-Maharlooei M, Pakyari M, Jalili RB, et al. Tolerogenic effect of mouse fibroblasts on dendritic cells. Immunology 2016; 148: 22–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Theobald V, Lauer J, Kaplan F, Baker K, Rosenberg M. ‘Neutral allografts’-lack of allogeneic stimulation by cultured human cells expressing MHC class I and class II antigens. Transplantation 1993; 55: 128–33.

    Article  CAS  PubMed  Google Scholar 

  32. Brant JO, Lopez M-C, Baker HV, Barbazuk WB, Maden MA. Comparative analysis of gene expression profiles during skin regeneration in mus and acomys. PLoS One 2015; 10: e0142931.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Rheinwald JG, Green H. Serial cultivation of strains of human epidermal keratinocytes: the formation of keratinizing colonies from single cells. Cell 1975; 6: 331–43.

    Article  CAS  PubMed  Google Scholar 

  34. Tan KKB, Salgado G, Connolly JE, Chan JKY, Lane EB. Characterization of fetal keratinocytes, showing enhanced stem cell-like properties: a potential source of cells for skin reconstruction. Stem Cell Rep 2014; 3: 324–38.

    Article  CAS  Google Scholar 

  35. Coolen NA, Schouten KCWM, Middelkoop E, Ulrich MMW. Comparison between human fetal and adult skin. Arch Dermatol Res 2010; 302: 47–55.

    Article  PubMed  Google Scholar 

  36. Rippa AL, Vorotelyak EA, Vasiliev AV, Terskikh VV. The role of integrins in the development and homeostasis of the epidermis and skin appendages. Acta Naturae 2013; 5: 22–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Shah M, Foreman DM, Ferguson MWJ. Neutralisation of TGF-β1 and TGF-β2 or exogenous addition of TGF-β3 to cutaneous rat wounds reduces scarring. J Cell Sci 1995; 108: 985–1002.

    CAS  PubMed  Google Scholar 

  38. Whitby DJ, Ferguson MWJ. Immunohistochemical localization of growth factors in fetal wound healing. Dev Biol 1991; 147: 207–15.

    Article  CAS  PubMed  Google Scholar 

  39. Martin P, Dickson MC, Millan FA, Akhurst RJ. Rapid induction and clearance of TGFbeta1 is an early response to wounding in the mouse embryo. Dev Genet 1993; 14: 225–38.

    Article  CAS  PubMed  Google Scholar 

  40. Gosiewska A, Yi CF, Brown LJ, Cullen B, Silcock D, Geesin JC. Differential expression and regulation of extracellular matrix-associated genes in fetal and neonatal fibroblasts. Wound Repair Regen 2001; 9: 213–22.

    Article  CAS  PubMed  Google Scholar 

  41. Sullivan KM, Lorenz P, Meuli M, Lin Y, Adzick NS. A model of scarless human fetal wound repair is deficient in transforming growth factor beta. J Pediatr Surg 1995; 30: 198–202.

    Article  CAS  PubMed  Google Scholar 

  42. Borel J, Maquart F. Molecular mechanisms of wound scarring. Annales de Biologie Clinique 1998; 56: 11–9.

    CAS  PubMed  Google Scholar 

  43. Rad MM, Rad NM, Mirdamadi Y. Expression of TGF-β3 in isolated fibroblasts from foreskin. Rep Biochem Mol Biol 2015; 3: 76–81.

    Google Scholar 

  44. Li W-Y, Huang EY, Dudas M, Kaartinen V, Warburton D, Tuan TL. Transforming growth factor-beta3 affects plasminogen activator inhibitor-1 expression in fetal mice and modulates fibroblast-mediated collagen gel contraction. Wound Repair Regen 2006; 14: 516–25.

    Article  CAS  PubMed  Google Scholar 

  45. Wilgus TA, Ferreira AM, Oberyszyn TM, Bergdall VK, DiPietro LA. Regulation of scar formation by vascular endothelial growth factor. Lab Invest 2008; 88: 579–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Wilgus TA, Matthies AM, Radek KA, et al. Novel function for vascular endothelial growth factor receptor-1 on epidermal keratinocytes. Am J Pathol 2005; 167: 1257–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Colwell AS, Beanes SR, Soo C, et al. Increased angiogenesis and expression of vascular endothelial growth factor during scarless repair. Plast Reconstr Surg 2005; 115: 204–12.

    CAS  PubMed  Google Scholar 

  48. Gaetani M, Chinnici CM, Carreca AP, Di Pasquale C, Amico G, Conaldi PG. Unbiased and quantitative proteomics reveals highly increased angiogenesis induction by the secretome of mesenchymal stromal cells isolated from fetal rather than adult skin. J Tissue Eng Regen Med 2018; 12: e949–61.

    Article  CAS  PubMed  Google Scholar 

  49. Coolen NA, Schouten KCWM, Boekema BKHL, Middelkoop E, Ulrich MMW. Wound healing in a fetal, adult, and scar tissue model: a comparative study. Wound Repair Regen 2010; 18: 291–301.

    Article  PubMed  Google Scholar 

  50. Ellis IR, Schor SL. Differential motogenic and biosynthetic response of fetal and adult skin fibroblasts to TGF-b isoforms. Cytokine 1998; 10: 281–9.

    Article  CAS  PubMed  Google Scholar 

  51. Alaish SM, Yager D, Diegelmann RF, Cohen IK. Biology of fetal wound healing: hyaluronate receptor expression in fetal fibroblasts. J Pediatr Surg 1994; 29: 1040–3.

    Article  CAS  PubMed  Google Scholar 

  52. Smith LT, Holbrook KA, Madri JA. Collagen types I, III, and V in human embryonic and fetal skin. Am J Anat 1986; 175: 507–21.

    Article  CAS  PubMed  Google Scholar 

  53. Mast BA, Diegelmann RF, Krummel TM, Cohen IK. Hyaluronic acid modulates proliferation, collagen and protein synthesis of cultured fetal fibroblasts. Matrix 1993; 13: 441–6.

    Article  CAS  PubMed  Google Scholar 

  54. Longaker MT, Chiu ES, Adzick NS, Stern M, Harrison MR, Stern R. Studies in fetal wound healing. V. A prolonged presence of hyaluronic acid characterizes fetal wound fluid. Ann Surg 1991; 213: 292–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Mast BA, Flood LC, Haynes JH, et al. Hyaluronic acid is a major component of the matrix of fetal rabbit skin and wounds: implications for healing by regeneration. Matrix 1991; 11: 63–8.

    Article  CAS  PubMed  Google Scholar 

  56. Longaker MT, Chiu ES, Harrison MR, et al. Studies in fetal wound healing. IV. Hyaluronic acid-stimulating activity distinguishes fetal wound fluid from adult wound fluid. Ann Surg 1989; 210: 667–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Krasinski R, Tchorzewski H. Hyaluronan-mediated regulation of inflammation. Postepy Hig Med Dosw (Online) 2007; 61: 683–9.

    Google Scholar 

  58. Sidgwick GP, Iqbal SA, Bayat A. Altered expression of hyaluronan synthase and hyaluronidase mRNA may affect hyaluronic acid distribution in keloid disease compared with normal skin. Exp Dermatol 2013; 22: 377–9.

    Article  CAS  PubMed  Google Scholar 

  59. Whitby DJ, Longaker MT, Harrison MR, Adzick NS, Ferguson MW. Rapid epithelialisation of fetal wounds is associated with the early deposition of tenascin. J Cell Sci 1991; 99: 583–6.

    PubMed  Google Scholar 

  60. Gallo R, Kim C, Kokenyesi R, Adzick NS, Bernfield M. Syndecans- 1 and -4 are induced during wound repair of neonatal but not fetal skin. J Invest Dermatol 1996; 107: 676–83.

    Article  CAS  PubMed  Google Scholar 

  61. Cheng J, Yu H, Deng S, Shen G. MicroRNA profiling in mid- and late-gestational fetal skin: implication for scarless wound healing. Tohoku J Exp Med 2010; 221: 203–9.

    Article  CAS  PubMed  Google Scholar 

  62. Krummel TM, Ehrlich HP, Nelson JM, et al. In vitro and in vivo analysis of the inability of fetal rabbit wounds to contract. Wound Repair Regen 1993; 1: 15–21.

    Article  CAS  PubMed  Google Scholar 

  63. Li B, Wang JH-C. Fibroblasts and myofibroblasts in wound healing: force generation and measurement. J Tissue Viability 2011; 20: 108–20.

    Article  PubMed  Google Scholar 

  64. Midgley AC, Rogers M, Hallett MB, et al. Transforming growth factor-β1 (TGF-β1)-stimulated fibroblast to myofibroblast differentiation is mediated by hyaluronan (HA)-facilitated epidermal growth factor receptor (EGFR) and CD44 co-localization in lipid rafts. J Biol Chem 2013; 288: 14824–38.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Yannas IV, Tzeranis DS, So PTC. Regeneration of injured skin and peripheral nerves requires control of wound contraction, not scar formation. Wound Repair Regen 2017; 25: 177–91.

    Article  PubMed  PubMed Central  Google Scholar 

  66. Cass L, Sylvester KG, Yang Y, Crombleholme M, Adzick NS. Myofibroblast persistence in fetal sheep wounds is associated with scar formation. J Pediatr Surg 1997; 32: 1017–22.

    Article  CAS  PubMed  Google Scholar 

  67. Jerrell RJ, Leih MJ, Parekh A. The altered mechanical phenotype of fetal fibroblasts hinders myofibroblast differentiation. Wound Repair Regen 2019; 27: 29–38.

    Article  PubMed  Google Scholar 

  68. Rolfe KJ, Grobbelaar AO. A review of fetal scarless healing. ISRN Dermatology 2012; 2012: 698034.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Yates CC, Whaley D, Wells A. Transplanted fibroblasts prevents dysfunctional repair in a murine cxcr3-deficient scarring model. Cell Transplantation 2012; 21: 919–31.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Applegate LA, Scaletta C, Hirt-Burri N, Raffoul W, Pioletti DP. Whole-cell bioprocessing of human fetal cells for tissue engineering of skin. Skin Pharmacol Physiol 2009; 22: 63–73.

    Article  CAS  PubMed  Google Scholar 

  71. Chinnici CM, Amico G, Monti M, et al. Isolation and characterization of multipotent cells from human fetal dermis. Cell Transplant 2014; 23: 1169–85.

    Article  PubMed  Google Scholar 

  72. Haniffa MA, Wang XN, Holtick U, et al. Adult human fibroblasts are potent immunoregulatory cells and functionally equivalent to mesenchymal stem cells. J Immunol 2007; 179: 1595–604.

    Article  CAS  PubMed  Google Scholar 

  73. Zuliani T, Saiagh S, Knol AC, Esbelin J, Dréno B. Fetal fibroblasts and keratinocytes with immunosuppressive properties for allogeneic cell-based wound therapy. PLoS One 2013; 8: e70408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Motamed S, Taghiabadi E, Molaei H, et al. Cell-based skin substitutes accelerate regeneration of extensive burn wounds in rats. Am J Surg 2017; 214: 762–9.

    Article  PubMed  Google Scholar 

  75. Akershoek JJ, Vlig M, Talhout W, et al. Cell therapy for full-thickness wounds: are fetal dermal cells a potential source? Cell Tissue Res 2016; 364: 83–94.

    Article  CAS  PubMed  Google Scholar 

  76. Eggenhofer E, Luk F, Dahlke MH, Hoogduijn MJ. The life and fate of mesenchymal stem cells. Front Immunol 2014; 5: 148.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. Nuschke A. Activity of mesenchymal stem cells in therapies for chronic skin wound healing. Organogenesis 2014; 10: 29–37.

    Article  PubMed  Google Scholar 

  78. Wang Z, Liu X, Zhang D, et al. Co-culture with human fetal epidermal keratinocytes promotes proliferation and migration of human fetal and adult dermal fibroblasts. Mol Med Rep 2015; 11: 1105–10.

    Article  CAS  PubMed  Google Scholar 

  79. Wang Z, Liu X, Zhang D, et al. Phenotypic and functional modulation of 20–30-year-old dermal fibroblasts by mid- and late-gestational keratinocytes in vitro. Burns 2015; 41: 1064–75.

    Article  PubMed  Google Scholar 

  80. Wang Z, Song Q, Li H. Suppressive effects of human fetal keratinocytes on the proliferation, differentiation and extracellular matrix synthesis of human hypertrophic scar fibroblasts in vitro. Mol Med Rep 2017; 16: 5377–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Mazzone L, Pratsinis M, Pontiggia L, Reichmann E, Meuli M. Successful grafting of tissue-engineered fetal skin. Pediatr Surg Int 2016; 32: 1177–82.

    Article  CAS  PubMed  Google Scholar 

  82. Lorenz HP, Lin RY, Longaker MT, Whitby DJ, Adzick NS. The fetal fibroblast: the effector cell of scarless fetal skin repair. Plast Reconstr Surg 1995; 96: 1251–9.

    Article  CAS  PubMed  Google Scholar 

  83. Ertl J, Pichlsberger M, Tuca AC, et al. Comparative study of regenerative effects of mesenchymal stem cells derived from placental amnion, chorion and umbilical cord on dermal wounds. Placenta 2018; 65: 37–46.

    Article  CAS  PubMed  Google Scholar 

  84. Kim Y-J, Seo DH, Lee SH, et al. Conditioned media from human umbilical cord blood-derived mesenchymal stem cells stimulate rejuvenation function in human skin. Biochem Biophys Rep 2018; 16: 96–102.

    PubMed  PubMed Central  Google Scholar 

  85. Wang L, Wang F, Zhao L, et al. Mesenchymal stem cells coated by the extracellular matrix promote wound healing in diabetic rats. Stem Cells 2019; 2019: 9564869.

    Google Scholar 

  86. Han Y, Sun T, Han Y, et al. Human umbilical cord mesenchymal stem cells implantation accelerates cutaneous wound healing in diabetic rats via the Wnt signaling pathway. Eur J Med Res 2019; 24: 10.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Mahmood R, Mehmood A, Choudhery MS, Awan SJ, Khan SN, Riazuddin S. Human neonatal stem cell-derived skin substitute improves healing of severe burn wounds in a rat model. Cell Bio Int 2019; 43: 147–57.

    Article  CAS  Google Scholar 

  88. Seppanen E, Roy E, Ellis R, Bou-Gharios G, Fisk NM, Khosrotehrani K. Distant mesenchymal progenitors contribute to skin wound healing and produce collagen: evidence from a murine fetal microchimerism model. PLoS One 2013; 8: e62662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Nassar D, Droitcourt C, Mathieu-d’Argent E, Kim MJ, Khosrotehrani K, Aractingi S. Fetal progenitor cells naturally transferred through pregnancy participate in inflammation and angiogenesis during wound healing. FASEB J 2012; 26: 149–57.

    Article  CAS  PubMed  Google Scholar 

  90. Castela M, Nassar D, Sbeih M, Jachiet M, Wang Z, Aractingi S. Ccl2/Ccr2 signalling recruits a distinct fetal microchimeric population that rescues delayed maternal wound healing. Nature Commun 2017; 8: 15463.

    Article  CAS  Google Scholar 

  91. Clark RAF, Ghosh K, Tonnesen MG. Tissue engineering for cutaneous wounds. J Invest Dermatol 2007; 127: 1018–29.

    Article  CAS  PubMed  Google Scholar 

  92. Shakespeare PG. The role of skin substitutes in the treatment of burn injuries. Clin Dermatol 2005; 23: 413–8.

    Article  PubMed  Google Scholar 

  93. MacNeil S. Progress and opportunities for tissue-engineered skin. Nature 2007; 445: 874–80.

    Article  CAS  PubMed  Google Scholar 

  94. Mansbridge JN. Tissue-engineered skin substitutes in regenerative medicine. Curr Opin Biotechnol 2009; 20: 563–7.

    Article  CAS  PubMed  Google Scholar 

  95. Priya SG, Jungvid H, Kumar A. Skin tissue engineering for tissue repair and regeneration. Tissue Eng Part B Rev 2008; 14: 105–18.

    Article  CAS  PubMed  Google Scholar 

  96. Still J, Glat P, Silverstein P, Griswold J, Mozingo D. The use of a collagen sponge/living cell composite material to treat donor sites in burn patients. Burns 2003; 29: 837–41.

    Article  PubMed  Google Scholar 

  97. Kirsner RS. The use of Apligraf in acute wounds. J Dermatol 1998; 25: 805–11.

    CAS  PubMed  Google Scholar 

  98. Mcheik JN, Barrault C, Levard G, Morel F, Bernard FX, Lecron JC. Epidermal healing in burns: autologous keratinocyte transplantation as a standard procedure: update and perspective. Plast Reconstr Surg Glob Open 2014; 2: e218.

    Article  PubMed  PubMed Central  Google Scholar 

  99. He C, Heeger PS. CD8 T cells can reject major histocompatibility complex class I-deficient skin allografts. Am J Transplant 2004; 4: 698–704.

    Article  PubMed  Google Scholar 

  100. Funeshima-Fuji N, Fujino M, Kimura H, et al. Survival of skin allografts is prolonged in mice with a dominant-negative H-Ras. Transpl Immunol 2008; 18: 302–6.

    Article  CAS  PubMed  Google Scholar 

  101. Gurtner GC, Werner S, Barrandon Y, Longaker MT. Wound repair and regeneration. Nature 2008; 453: 314–21.

    Article  CAS  PubMed  Google Scholar 

  102. Gold MH, Goldman MP, Biron J. Efficacy of novel skin cream containing mixture of human growth factors and cytokines for skin rejuvenation. J Drugs Dermatol 2007; 6: 197–201.

    PubMed  Google Scholar 

  103. McLaughlin PJ, Cain JD, Titunick MB, Sassani JW, Zagon IS. Topical naltrexone is a safe and effective alternative to standard treatment of diabetic wounds. Adv Wound Care 2017; 6: 279–88.

    Article  Google Scholar 

  104. Little J, Murdy R, Cossar N, Getliffe KM, Hanak J, Ferguson MW. TGF β 3 immunoassay standardization: comparison of NIBSC reference preparation code 98/608 with avotermin lot 205-0505-005. J Immunoassay Immunochem 2012; 33: 66–81.

    Article  CAS  PubMed  Google Scholar 

  105. Hohlfeld J, de Buys Roessingh A, Hirt-Burri N, et al. Tissue engineered fetal skin constructs for paediatric burns. Lancet 2005; 366: 840–2.

    Article  PubMed  Google Scholar 

  106. Ramelet A-A, Hirt-Burri N, Raffoul W, et al. Chronic wound healing by fetal cell therapy may be explained by differential gene profiling observed in fetal versus old skin cells. Exp Gerontol 2009; 44: 208–18.

    Article  CAS  PubMed  Google Scholar 

  107. Momeni M, Fallah N, Bajouri A, et al. A randomized, double-blind, phase I clinical trial of fetal cell-based skin substitutes on healing of donor sites in burn patients. Burns 2019; 45: 914–22.

    Article  PubMed  Google Scholar 

  108. Goodarzi P, Falahzadeh K, Aghayan H, et al. Therapeutic abortion and ectopic pregnancy: alternative sources for fetal stem cell research and therapy in Iran as an Islamic country. Cell Tissue Bank 2019; 20: 11–24.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments and disclosures

Acknowledgments: We thank Dr Dagnelie of the CHU of Nantes for useful scientific exchanges and help with this review. We also thank Servier Medical Art for the illustrations. Financial support: JL is supported by NAOS. Conflicts of interest: JL is supported by NAOS.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brigitte Dreno.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorant, J., Poinas, A., Nerriere, O. et al. Foetal skin cells in wound healing: a promising tool for clinical application. Eur J Dermatol 29, 585–595 (2019). https://doi.org/10.1684/ejd.2019.3675

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2019.3675

Key words

Navigation