Skip to main content

Advertisement

Log in

Heat shock proteins and psoriasis

  • Review
  • Published:
European Journal of Dermatology

Abstract

Psoriasis is a chronic disfiguring skin condition which may be induced or exacerbated by stress. Heat shock proteins (HSPs), as molecular chaperones, play a central role in protein folding and cellular protein homeostasis. The many different functions of HSPs in the cell depend on the specific HSP involved. HSPs play crucial roles in inflammation and immune reactions, and have emerged as promising therapeutic targets. In this review, we compile current lines of evidence concerning the roles and molecular mechanisms of HSPs that lead to the occurrence and development of psoriasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wu W, Debbaneh M, Moslehi H, Koo J, Liao W. Tonsillectomy as a treatment for psoriasis: a review. J Dermatolog Treat 2014;25: 482–6.

    Article  PubMed  Google Scholar 

  2. Wick G, Jakic B, Buszko M, Wick MC, Grundtman C. The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol 2014;11: 516–29.

    Article  CAS  PubMed  Google Scholar 

  3. Zhang L, Fok JH, Davies FE. Heat shock proteins in multiple myeloma. Oncotarget 2014;5: 1132–48.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Shrestha L, Bolaender A, Patel HJ, Taldone T. Heat shock protein (HSP) drug discovery and development: targeting heat shock proteins in disease. Curr Top Med Chem 2016;16: 2753–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kakeda M, Arock M, Schlapbach C, Yawalkar N. Increased expression of heat shock protein 90 in keratinocytes and mast cells in patients with psoriasis. J Am Acad Dermatol 2014;70: 683–90 e1.

    Article  CAS  PubMed  Google Scholar 

  6. Ghayour-Mobarhan M, Saber H, Ferns GA. The potential role of heat shock protein 27 in cardiovascular disease. Clinica Chimica Acta 2012;413: 15–24.

    Article  CAS  Google Scholar 

  7. Kampinga HH, Brunsting JF, Stege GJ, Konings AW, Landry J. Cells overexpressing Hsp27 show accelerated recovery from heat-induced nuclear protein aggregation. Biochem Biophys Res Commun 1994;204: 1170–7.

    Article  CAS  PubMed  Google Scholar 

  8. Singh MK, Sharma B, Tiwari PK. The small heat shock protein Hsp27: present understanding and future prospects. J Therm Biol 2017;69: 149–54.

    Article  CAS  PubMed  Google Scholar 

  9. Hao X, Zhang S, Timakov B, Zhang P. The Hsp27 gene is not required for Drosophila development but its activity is associated with starvation resistance. Cell Stress Chaperones 2007;12: 364–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Baz K, Cimen MY, Kokturk A, et al. Oxidant /antioxidant status in patients with psoriasis. Yonsei Med J 2003;44: 987–90.

    Article  PubMed  Google Scholar 

  11. Wang WM, Jin HZ. Homocysteine: a potential common route for cardiovascular risk and DNA methylation in psoriasis. Chin Med J (Engl) 2017;130: 1980–6.

    Article  Google Scholar 

  12. Bektas M, Rubenstein DS. What’s in a name? Heat shock protein 27 and keratinocyte differentiation. J Invest Dermatol 2010;130: 10–2.

    Article  CAS  PubMed  Google Scholar 

  13. Jonak C, Mildner M, Klosner G, et al. The hsp27kD heat shock protein and p38-MAPK signaling are required for regular epidermal differentiation. J Dermatol Sci 2011;61: 32–7.

    Article  CAS  PubMed  Google Scholar 

  14. Robitaille H, Simard-Bisson C, Larouche D, Tanguay RM, Blouin R, Germain L. The small heat-shock protein Hsp27 undergoes ERK-dependent phosphorylation and redistribution to the cytoskeleton in response to dual leucine zipper-bearing kinase expression. J Invest Dermatol 2010;130: 74–85.

    Article  CAS  PubMed  Google Scholar 

  15. Gandour-Edwards R, McClaren M, Isseroff RR. Immunolocalization of low-molecular-weight stress protein HSP 27 in normal skin and common cutaneous lesions. Am J Dermatopathol 1994;16: 504–9.

    Article  CAS  PubMed  Google Scholar 

  16. Sur R, Lyte PA, Southall MD. Hsp27 regulates pro-inflammatory mediator release in keratinocytes by modulating NF-kappaB signaling. J Invest Dermatol 2008;128: 1116–22.

    Article  CAS  PubMed  Google Scholar 

  17. Becker B, Vogt T, Landthaler M, Stolz W. Detection of differentially regulated genes in keratinocytes by cDNA array hybridization: Hsp27 and other novel players in response to artificial ultraviolet radiation. J Invest Dermatol 2001;116: 983–8.

    Article  CAS  PubMed  Google Scholar 

  18. Besgen P, Trommler P, Vollmer S, Prinz JC. Ezrin, maspin, peroxiredoxin 2, and heat shock protein 27: potential targets of a streptococcal-induced autoimmune response in psoriasis. J Immunol 2010;184: 5392–402.

    Article  CAS  PubMed  Google Scholar 

  19. Wang WM, Jin HZ. Skin microbiome: an actor in the pathogenesis of psoriasis. Chin Med J (Engl) 2018;131: 95–8.

    Article  Google Scholar 

  20. Korkmaz S, Korkmaz H. Effect of alterations in apoptotic pathway on development of metabolic syndrome in patients with psoriasis vulgaris. Br J Dermatol 2017;176: 1549–57.

    Article  CAS  PubMed  Google Scholar 

  21. Doss RW, El-Rifaie AA, Abdel-Wahab AM, Gohary YM, Rashed LA. Heat shock protein-70 expression in vitiligo and its relation to the disease activity. Indian J Dermatol 2016;61: 408–12.

    Article  PubMed  PubMed Central  Google Scholar 

  22. Ravagnan L, Gurbuxani S, Susin SA, et al. Heat-shock protein 70 antagonizes apoptosis-inducing factor. Nat Cell Biol 2001;3: 839–43.

    Article  CAS  PubMed  Google Scholar 

  23. Wolf BB, Green DR. Suicidal tendencies: apoptotic cell death by caspase family proteinases. J Biol Chem 1999;274: 20049–52.

    Article  CAS  PubMed  Google Scholar 

  24. Ikwegbue PC, Masamba P, Oyinloye BE, Kappo AP. Roles of heat shock proteins in apoptosis, oxidative stress, human inflammatory diseases, and cancer. Pharmaceuticals (Basel) 2017;11: 1.

    Article  CAS  Google Scholar 

  25. Trott A, West JD, Klaic L, et al. Activation of heat shock and antioxidant responses by the natural product celastrol: transcriptional signatures of a thiol-targeted molecule. Mol Biol Cell 2008;19: 1104–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Qu B, Jia Y, Liu Y, Wang H, Ren G, Wang H. The detection and role of heat shock protein 70 in various nondisease conditions and disease conditions: a literature review. Cell Stress Chaperones 2015;20: 885–92.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Stocki P, Wang XN, Dickinson AM. Inducible heat shock protein 70 reduces T cell responses and stimulatory capacity of monocyte-derived dendritic cells. J Biol Chem 2012;287: 12387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Chinnathambi S, Tomanek-Chalkley A, Bickenbach JR. HSP70 and EndoG modulate cell death by heat in human skin keratinocytes in vitro. Cells Tissues Organs 2008;187: 131–40.

    Article  CAS  PubMed  Google Scholar 

  29. Boyman O, Conrad C, Dudli C, Kielhorn E, Nickoloff BJ, Nestle FO. Activation of dendritic antigen-presenting cells expressing common heat shock protein receptor CD91 during induction of psoriasis. Br J Dermatol 2005;152: 1211–8.

    Article  CAS  PubMed  Google Scholar 

  30. Bayramgurler D, Ozkara SK, Apaydin R, Ercin C, Bilen N. Heat shock proteins 60 and 70 expression of cutaneous lichen planus: comparison with normal skin and psoriasis vulgaris. J Cutan Pathol 2004;31: 586–94.

    Article  PubMed  Google Scholar 

  31. Valeyre D, Prasse A, Nunes H, Uzunhan Y, Brillet PY, Muller-Quernheim J. Sarcoidosis. Lancet 2014;383: 1155–67.

    Article  PubMed  Google Scholar 

  32. Curry JL, Qin JZ, Bonish B, et al. Innate immune-related receptors in normal and psoriatic skin. Arch Pathol Lab Med 2003;127: 178–86.

    CAS  PubMed  Google Scholar 

  33. Lober CW, Belew PW, Rosenberg EW, Bale G. Patch tests with killed sonicated microflora in patients with psoriasis. Arch Dermatol 1982;118: 322–5.

    Article  CAS  PubMed  Google Scholar 

  34. Bunse T, Mahrle G. Soluble Pityrosporum-derived chemoattractant for polymorphonuclear leukocytes of psoriatic patients. Acta Derm Venereol 1996;76: 10–2.

    CAS  PubMed  Google Scholar 

  35. Baroni A, Paoletti I, Ruocco E, Agozzino M, Tufano MA, Donnarumma G. Possible role of Malassezia furfur in psoriasis: modulation of TGF-beta1, integrin, and HSP70 expression in human keratinocytes and in the skin of psoriasis-affected patients. J Cutan Pathol 2004;31: 35–42.

    Article  PubMed  Google Scholar 

  36. Borska L, Andrys C, Krejsek J, et al. Genotoxic hazard and cellular stress in pediatric patients treated for psoriasis with the Goeckerman regimen. Pediatr Dermatol 2009;26: 23–7.

    Article  PubMed  Google Scholar 

  37. Seifarth FG, Lax JE, Harvey J, et al. Topical heat shock protein 70 prevents imiquimod-induced psoriasis-like inflammation in mice. Cell Stress Chaperones 2018;23: 1129–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Calapre L, Gray ES, Ziman M. Heat stress: a risk factor for skin carcinogenesis. Cancer Lett 2013;337: 35–40.

    Article  CAS  PubMed  Google Scholar 

  39. Ortega E, Hinchado MD, Martin-Cordero L, Asea A. The effect of stress-inducible extracellular Hsp72 on human neutrophil chemotaxis: a role during acute intense exercise. Stress 2009;12: 240–9.

    Article  CAS  PubMed  Google Scholar 

  40. Krause M, Heck TG, Bittencourt A, et al. The chaperone balance hypothesis: the importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediators Inflamm 2015;2015:249205.

  41. Krause M, Rodrigues-Krause Jda C. Extracellular heat shock proteins (eHSP70) in exercise: possible targets outside the immune system and their role for neurodegenerative disorders treatment. Med Hypotheses 2011;76: 286–90.

    Article  CAS  PubMed  Google Scholar 

  42. de Lemos Muller CH, Rech A, Botton CE, et al. Heat-induced extracellular HSP72 release is blunted in elderly diabetic people compared with healthy middle-aged and older adults, but it is partially restored by resistance training. Exp Gerontol 2018;111: 180–7.

    Article  CAS  PubMed  Google Scholar 

  43. Hasegawa A, Iwasaka H, Hagiwara S, Noguchi T. Relationship between HMGB1 and tissue protective effects of HSP72 in a LPS-induced systemic inflammation model. J Surg Res 2011;169: 85–91.

    Article  CAS  PubMed  Google Scholar 

  44. Amorim FT, Fonseca IT, Machado-Moreira CA, Magalhaes Fde C. Insights into the role of heat shock protein 72 to whole-body heat acclimation in humans. Temperature (Austin) 2015;2: 499–505.

    Article  Google Scholar 

  45. Edwards MJ, Nazmi N, Mower C, Daniels A. Hsp72 antigen expression in the proliferative compartment of involved psoriatic epidermis. J Cutan Pathol 1999;26: 483–9.

    Article  CAS  PubMed  Google Scholar 

  46. Puig L, Fernandez-Figueras MT, Ferrandiz C, Ribera M, de Moragas JM. Epidermal expression of 65 and 72 kd heat shock proteins in psoriasis and AIDS-associated psoriasiform dermatitis. J Am Acad Dermatol 1995;33: 985–9.

    Article  CAS  PubMed  Google Scholar 

  47. Proia DA, Kaufmann GF. Targeting heat-shock protein 90 (HSP90) as a complementary strategy to immune checkpoint blockade for cancer therapy. Cancer Immunol Res 2015;3: 583–9.

    Article  CAS  PubMed  Google Scholar 

  48. Peterson LB, Eskew JD, Vielhauer GA, Blagg BS. The hERG channel is dependent upon the Hsp90a isoform for maturation and trafficking. Mol Pharm 2012;9: 1841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Verma S, Goyal S, Jamal S, Singh A, Grover A. Hsp90: friends, clients and natural foes. Biochimie 2016;127: 227–40.

    Article  CAS  PubMed  Google Scholar 

  50. Baliwag J, Barnes DH, Johnston A. Cytokines in psoriasis. Cytokine 2015;73: 342–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang C, Wu L, Bulek K, et al. The psoriasis-associated D10N variant of the adaptor Act1 with impaired regulation by the molecular chaperone hsp90. Nat Immunol 2013;14: 72–81.

    Article  CAS  PubMed  Google Scholar 

  52. Stenderup K, Rosada C, Gavillet B, Vuagniaux G, Dam TN. Debio 0932, a new oral Hsp90 inhibitor, alleviates psoriasis in a xenograft transplantation model. Acta Derm Venereol 2014;94: 672–6.

    Article  CAS  PubMed  Google Scholar 

  53. Vanden Berghe T, Kalai M, van Loo G, Declercq W, Van-denabeele P. Disruption of HSP90 function reverts tumor necrosis factor-induced necrosis to apoptosis. J Biol Chem 2003;278: 5622–9.

    Article  CAS  PubMed  Google Scholar 

  54. Munster PN, Srethapakdi M, Moasser MM, Rosen N. Inhibition of heat shock protein 90 function by ansamycins causes the morphological and functional differentiation of breast cancer cells. Cancer Res 2001;61: 2945–52.

    CAS  PubMed  Google Scholar 

  55. Criado-Marrero M, Rein T, Binder EB, Porter JT, Koren J. 3rd JT, Blair LJ. Hsp90 and FKBP51: complex regulators of psychiatric diseases. Philos Trans R Soc Lond B Biol Sci 2018;373: 1738.

    Article  CAS  Google Scholar 

  56. Radley JJ, Johnson SB. Anteroventral bed nuclei of the stria terminalis neurocircuitry: towards an integration of HPA axis modulation with coping behaviors — Curt Richter Award Paper 2017. Psychoneu-roendocrinology 2018;89: 239–49.

    Article  CAS  Google Scholar 

  57. Evers AW, Verhoeven EW, Kraaimaat FW, et al. How stress gets under the skin: cortisol and stress reactivity in psoriasis. Br J Dermatol 2010;163: 986–91.

    Article  CAS  PubMed  Google Scholar 

  58. Zannas AS, Wiechmann T, Gassen NC, Binder EB. Genestress-epigenetic regulation of FKBP5: clinical and translational implications. Neuropsychopharmacology 2016;41: 261–74.

    Article  CAS  PubMed  Google Scholar 

  59. Rambukkana A, Das PK, Witkamp L, Yong S, Meinardi MM, Bos JD. Antibodies to mycobacterial 65-kDa heat shock protein and other immunodominant antigens in patients with psoriasis. J Invest Dermatol 1993;100: 87–92.

    Article  CAS  PubMed  Google Scholar 

  60. Cancino-Diaz ME, Ruiz-Gonzalez V, Ramirez-Resendiz L, et al. IgG class antibodies from psoriasis patients recognize the 60-KDa heat-shock protein of Streptococcus pyogenes. Int J Dermatol 2004;43: 341–7.

    Article  CAS  PubMed  Google Scholar 

  61. Perez-Lorenzo R, Zambrano-Zaragoza JF, Moo-Castillo K, Luna-Vazquez DL, Ruiz-Guillermo L, Garcia-Latorre E. IgG class antibodies to heat shock-induced streptococcal antigens in psoriatic patients. Int J Dermatol 2003;42: 110–5.

    Article  CAS  PubMed  Google Scholar 

  62. Ishihara K, Ando T, Kosugi M, et al. Relationships between the onset of pustulosis palmaris et plantaris, periodontitis and bacterial heat shock proteins. Oral Microbiol Immunol 2000;15: 232–7.

    Article  CAS  PubMed  Google Scholar 

  63. Hayashi M, Fujihara K, Beder LB, Yamamoto Y, Hotomi M, Yamanaka N. Pathogenic role of tonsillar lymphocytes in associated with HSP60/65 in Pustulosis palmaris et plantaris. Auris Nasus Larynx 2009;36: 578–85.

    Article  PubMed  Google Scholar 

  64. Li XS, Xu Q, Fu XY, Luo WS. Heat shock protein 60 overexpression is associated with the progression and prognosis in gastric cancer. PloS One 2014;9:e107507.

  65. Samali A, Cai J, Zhivotovsky B, Jones DP, Orrenius S. Presence of a pre-apoptotic complex of pro-caspase-3, Hsp60 and Hsp10 in the mitochondrial fraction of jurkat cells. EMBO J 1999;18: 2040–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Gupta S, Knowlton AA. Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation 2002;106: 2727–33.

    Article  CAS  PubMed  Google Scholar 

  67. Seung NR, Park EJ, Kim CW, et al. Comparison of expression of heat-shock protein 60, Toll-like receptors 2 and 4, and T-cell receptor gammadelta in plaque and guttate psoriasis. J Cutan Pathol 2007;34: 903–11.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong-Zhong Jin.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, WM., Jin, HZ. Heat shock proteins and psoriasis. Eur J Dermatol 29, 121–125 (2019). https://doi.org/10.1684/ejd.2019.3526

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2019.3526

Key words

Navigation