Skip to main content
Log in

Pluripotent stem cells as a cellular model for skin: relevance for physiopathology, cell/gene therapy and drug screening

  • SPIM 2014 Proceedings
  • Published:
European Journal of Dermatology Aims and scope

Abstract

The skin represents the largest tissue in the human body. Its external part, the epidermis, accomplishes vital functions such as barrier protection, thermoregulation and immune function. The mammalian skin epidermis has been for decades the paradigm for studying the molecular events that occur in tissue homeostasis and repair. Many genes and signaling pathways have been identified by the use of manipulated transgenic and KO mice. However, despite numerous elegant transgenic mice experiments, absence of an appropriate in vitro model system has hampered the molecular study of the early events responsible for epidermal and dermal commitments, stages at which congenital genetic alterations are responsible for hundreds of rare skin diseases. For most of them, etiology and treatment are still missing. Here we review the last decade of studies aimed at designing cellular models from pluripotent stem cells (PSC) that recapitulate in vitro the main molecular steps of skin formation. As described below, PSC-based models are powerful tools to (i) clarify early molecular events that occur during epithelial/mesenchymal interactions, (ii) produce in large amount skin cells that could become an alternative for cell/gene therapies and (iii) screen for therapeutic compounds to treat genodermatoses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Evans MJ, Kaufman MH. Establishment in culture of pluripotential cells from mouse embryos. Nature 1981; 292: 154–6.

    Article  CAS  PubMed  Google Scholar 

  2. Martin GR. Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proc Natl Acad Sci USA 1981; 78: 7634–8.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Thomson JA, Itskovitz-Eldor J, Shapiro SS, et al. Embryonic stem cell lines derived from human blastocysts. Science 1998; 282: 1145–7.

    Article  CAS  PubMed  Google Scholar 

  4. Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 2007; 131: 861–72.

    Article  CAS  PubMed  Google Scholar 

  5. Petit I, Kesner NS, Karry R, et al. Induced pluripotent stem cells from hair follicles as a cellular model for neurodevelopmental disorders. Stem Cell Res 2012; 8: 134–40.

    Article  CAS  PubMed  Google Scholar 

  6. Inoue H, Nagata N, Kurokawa H, Yamanaka S. iPS cells: a game changer for future medicine. EMBO J 2014; 33: 409–17.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Weinstein DC, Hemmati-Brivanlou A. Neural induction in Xenopus laevis: evidence for the default model. Curr Opin Neurobiol 1997; 7: 7–12.

    Article  CAS  PubMed  Google Scholar 

  8. Bagutti C, Wobus AM, Fässler R, Watt FM. Differentiation of embryonal stem cells into keratinocytes: comparison of wild-type and beta 1 integrin-deficient cells. Dev Biol 1996; 179: 184–96.

    Article  CAS  PubMed  Google Scholar 

  9. Coraux C, Hilmi C, Rouleau M, et al. Reconstituted skin from murine embryonic stem cells. Curr Biol 2003; 13: 849–53.

    Article  CAS  PubMed  Google Scholar 

  10. Gambaro K, Aberdam E, Virolle T, Aberdam D, Rouleau M. BMP- 4 induces a Smad-dependent apoptotic cell death of mouse embryonic stem cell-derived neural precursors. Cell Death Differ 2006; 13: 1075–87.

    Article  CAS  PubMed  Google Scholar 

  11. Medawar A, Virolle T, Rostagno P, et al. DeltaNp63 is essential for epidermal commitment of embryonic stem cells. PLoS One 2008; 3: e3441.

    Article  PubMed Central  PubMed  Google Scholar 

  12. Lena AM, Shalom-Feuerstein R, Rivetti di Val Cervo P, et al. miR- 203 represses ‘stemness’ by repressing DeltaNp63. Cell Death Differ 2008; 15: 1187–95.

    Article  CAS  PubMed  Google Scholar 

  13. Yi R, Poy MN, Stoffel M, Fuchs E. A skin microRNA promotes differentiation by repressing ‘stemness’. Nature 2008; 452: 225–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  14. Shalom-Feuerstein R, Lena AM, Zhou H, et al. -Np63 is an ectodermal gatekeeper of epidermal morphogenesis. Cell Death Differ 2011; 18: 887–96.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  15. Metallo CM, Ji L, de Pablo JJ, Palecek SP. Retinoic acid and bone morphogenetic protein signaling synergize to efficiently direct epithelial differentiation of human embryonic stem cells. Stem Cells 2008; 26: 372–80.

    Article  CAS  PubMed  Google Scholar 

  16. Bamberger C, Pollet D, Schmale H. Retinoic acid inhibits downregulation of DeltaNp63alpha expression during terminal differentiation of human primary keratinocytes. J Invest Dermatol 2002; 118: 133–8.

    Article  CAS  PubMed  Google Scholar 

  17. Guenou H, Nissan X, Larcher F, et al. Human embryonic stemcell derivatives for full reconstruction of the pluristratified epidermis: a preclinical study. Lancet 2009; 374: 1745–53.

    Article  CAS  PubMed  Google Scholar 

  18. Itoh M, Kiuru M, Cairo MS, Christiano AM. Generation of keratinocytes from normal and recessive dystrophic epidermolysis bullosa-induced pluripotent stem cells. Proc Natl Acad Sci USA 2011; 108: 8797–802.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Petrova A, Celli A, Jacquet L, et al. 3D In vitro model of a functional epidermal permeability barrier from human embryonic stem cells and induced pluripotent stem cells. Stem Cell Reports 2014; 2: 675–89.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Hewitt KJ, Shamis Y, Carlson MW, Aberdam E, Aberdam D, Garlick JA. Three-dimensional epithelial tissues generated from human embryonic stem cells. Tissue Eng Part A 2009; 15: 3417–26.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. Shamis Y, Hewitt KJ, Carlson MW, et al. Fibroblasts derived from human embryonic stem cells direct development and repair of 3D human skin equivalents. Stem Cell Res Ther 2011; 2: 10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  22. Nissan X, Larribere L, Saidani M, et al. Functional melanocytes derived from human pluripotent stem cells engraft into pluristratified epidermis. Proc Natl Acad Sci USA 2011; 108: 14861–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  23. Mica Y, Lee G, Chambers SM, Tomishima MJ, Studer L. Modeling neural crest induction, melanocyte specification, and disease-related pigmentation defects in hESCs and patient-specific iPSCs. Cell Rep 2013; 3: 1140–52.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Veraitch O, Kobayashi T, Imaizumi Y, et al. Human induced pluripotent stem cell-derived ectodermal precursor cells contribute to hair follicle morphogenesis in vivo. J Invest Dermatol 2013; 133: 1479–88.

    Article  CAS  PubMed  Google Scholar 

  25. Yang R, Zheng Y, Burrows M, et al. Generation of folliculogenic human epithelial stem cells from induced pluripotent stem cells. Nat Commun 2014; 5: 3071.

    PubMed Central  PubMed  Google Scholar 

  26. Aberdam E, Barak E, Rouleau M, de LaForest S, Berrih-Aknin S, Suter DM, Krause KH, Amit M, Itskovitz-Eldor J, Aberdam D. A pure population of ectodermal cells derived from human embryonic stem cells. Stem Cells 2008; 26: 440–4.

    Article  CAS  PubMed  Google Scholar 

  27. Bilousova G, Chen J, Roop DR. Differentiation of mouse induced pluripotent stem cells into a multipotent keratinocyte lineage. J Invest Dermatol 2011; 131: 857–64.

    Article  CAS  PubMed  Google Scholar 

  28. Lian X, Selekman J, Bao X, Hsiao C, Zhu K, Palecek SP. A small molecule inhibitor of SRC family kinases promotes simple epithelial differentiation of human pluripotent stem cells. PLoS One 2013; 8: e60016.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  29. Di Iorio E, Kaye SB, Ponzin D, et al. Limbal stem cell deficiency and ocular phenotype in ectrodactyly-ectodermal dysplasia-clefting syndrome caused by p63 mutations. Ophthalmology 2012; 119: 74–83.

    Article  PubMed  Google Scholar 

  30. Shalom-Feuerstein R, Serror L, Aberdam E, et al. Impaired epithelial differentiation of induced pluripotent stem cells from ectodermal dysplasia-related patients is rescued by the small compound APR- 246/PRIMA-1MET. Proc Natl Acad Sci USA 2013; 110: 2152–6.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  31. Bykov VJ, Wiman KG. Mutant p53 reactivation by small molecules makes its way to the clinic. FEBS Lett 2014; 588: 2622–7.

    Article  CAS  PubMed  Google Scholar 

  32. Abdul-Wahab A, Qasim W, McGrath JA. Gene therapies for inherited skin disorders. Semin Cutan Med Surg 2014; 33: 83–90.

    Article  PubMed  Google Scholar 

  33. Aberdam D, Galliano MF, Vailly J, et al. Herlitz’s junctional epidermolysis bullosa is linked to mutations in the gene (LAMC2) for the gamma 2 subunit of nicein/kalinin (LAMININ-5). Nat Genet 1994; 6: 299–304.

    Article  CAS  PubMed  Google Scholar 

  34. Osborn MJ, Starker CG, McElroy AN, et al. TALEN-based gene correction for epidermolysis bullosa. Mol Ther 2013; 21: 1151–9.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sebastiano V, Zhen HH, Derafshi BH, et al. Human COL7A1- corrected induced pluripotent stem cells for the treatment of recessive dystrophic epidermolysis bullosa. Sci Transl Med 2014; 6: 264–163.

    Article  Google Scholar 

  36. Melo SP, Lisowski L, Bashkirova E, et al. Somatic correction of junctional epidermolysis bullosa by a highly recombinogenic AAV variant. Mol Ther 2014; 22: 725–33.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Wenzel D, Bayerl J, Nyström A, Bruckner-Tuderman L, Meixner A, Penninger JM. Genetically corrected iPSCs as cell therapy for recessive dystrophic epidermolysis bullosa. Sci Transl Med 2014; 26: 264ra165.

  38. Umegaki-Arao N, Pasmooij AM, Itoh M, et al. Induced pluripotent stem cells from human revertant keratinocytes for the treatment of epidermolysis bullosa. Sci Transl Med 2014; 6: 264ra164.

    Article  PubMed  Google Scholar 

  39. Jonkman MF, Scheffer H, Stulp R, et al. Revertant mosaicism in epidermolysis bullosa caused by mitotic gene conversion. Cell 1997; 88: 543–51.

    Article  CAS  PubMed  Google Scholar 

  40. Mayshar Y, Ben-David U, Lavon N, et al. Identification and classification of chromosomal aberrations in human induced pluripotent stem cells. Cell Stem Cell 2010; 7: 521–31.

    Article  CAS  PubMed  Google Scholar 

  41. Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells. Nature 2013; 494: 100–4.

    Article  CAS  PubMed  Google Scholar 

  42. Zhao T, Zhang ZN, Rong Z, Xu Y. Immunogenicity of induced pluripotent stem cells. Nature 2011; 474: 212–5.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet Levy.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Levy, A., Petit, I. & Aberdam, D. Pluripotent stem cells as a cellular model for skin: relevance for physiopathology, cell/gene therapy and drug screening. Eur J Dermatol 25 (Suppl 1), 12–17 (2015). https://doi.org/10.1684/ejd.2015.2537

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2015.2537

Keywords

Navigation