Skip to main content
Log in

Epicutaneous exposure to proteins and skin immune function

  • Review Article
  • Published:
European Journal of Dermatology

Abstract

The skin has a sophisticated and highly orchestrated immune system. The ability of proteins encountered at skin surfaces to access that immune system remains controversial, however. In this article the question considered is whether proteins encountered epicutaneously (on the skin) at abraded or tape-stripped skin surfaces, but also at sites where the skin is intact, can engage with the cutaneous immune system to provoke and regulate responses. The available evidence suggests that epicutaneous exposure to foreign proteins is able to elicit immune and allergic responses, and that encounter with protein via this route may favour the development of selective Th2 responses and allergic sensitisation. It is also clear that proteins can modify immunological function when delivered topically and that intact skin may provide an effective route of exposure for active immunotherapy of allergic disease. An appreciation that epicutaneously applied proteins can interact with the skin immune system, even when delivered at intact skin sites, opens up important opportunities for immunotherapy, local immune modulation and the treatment of inflammatory skin diseases. It also indicates that this route of exposure must be considered as part of the safety assessment and risk management of protein-induced allergic sensitisation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Kimber I, Cumberbatch M, Dearman RJ, Bhushan M, Griffiths CEM. Cytokines and chemokines in the initiation and regulation of epidermal Langerhans cell mobilization. Br J Dermatol 2000; 142: 401–412.

    Article  CAS  PubMed  Google Scholar 

  2. Streilein JW. Antigen-presenting cells in the induction of contact hypersensitivity in mice: evidence that Langerhans cells are sufficient but not required. J Invest Dermatol 1989; 93: 443–448.

    Article  Google Scholar 

  3. Kaplan DH, Jenison MC, Saeland S, Shlomchik WD, Shlomchik MJ. Epidermal Langerhans cell-deficient mice develop enhanced contact sensitivity. Immunity 2005; 23: 611–620.

    Article  CAS  PubMed  Google Scholar 

  4. Bobr A, Olvera-Gomez I, Igyarto BZ, Haley KM, Hogquist KA, Kaplan DH. Acute ablation of Langerhans cells enhances skin immune responses. J Immunol 2010; 185: 4724–4728.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Bennett CL, Noordegraaf M, Martina CA, Clausen BE. Langerhans cells are required for efficient presentation of topically applied hapten to T cells. J Immunol 2007; 179: 6830–6835.

    Article  CAS  PubMed  Google Scholar 

  6. Noordegraf M, Flacher V, Stoitzner P, Clausen BE. Functional redundancy of Langerhans cells and Langerin+ dermal dendritic cells in contact hypersensitivity. J Invest Dermatol 2010; 130: 2752–2759.

    Article  Google Scholar 

  7. Guilliams M, Henri S, Tamoutounour S, et al. From skin dendritic cells to a simplified classification of human and mouse dendritic cell subsets. Eur J Immunol 2010; 40: 2085–2130.

    Article  Google Scholar 

  8. Bursch LS, Wang L, Igyarto B, et al. Identification of a novel population of Langerin+ dendritic cells. J Exp Med 2007; 204: 3147–3156.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  9. Edelson BT, Wumesh KC, Juang R, et al. Peripheral CD103+ dendritic cells form a unified subset developmentally related to CD8α+ conventional dendritic cells. J Exp Med 2010; 207: 823–836.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  10. Kautz-Neu K, Noordegraaf M, Dinges S, et al. Langerhans cells are negative regulators of the anti-Leishmania response. J Exp Med 2011; 208: 885–891.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  11. Shklovskaya E, O’Sullivan BJ, Ng LG, et al. Langerhans cells are precommitted to immune tolerance induction. Proc Natl Acad Sci USA 2011; 108: 18049–18054.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  12. Yoshiki R, Kabashima K, Sugita K, Atarashi K, Shimauchi T, Tokura Y. IL-10-producing Langerhans cells and regulatory T cells are responsible for depressed contact hypersensitivity in grafted skin. J Invest Dermatol 2009; 129: 705–713.

    Article  CAS  PubMed  Google Scholar 

  13. Igyarto BZ, Kaplan DH. The evolving function of Langerhans cells in adaptive skin immunity. Immunol Cell Biol 2010; 88: 361–365.

    Article  PubMed Central  PubMed  Google Scholar 

  14. Schwarz A, Noordegraaf M, Maeda A, Torii K, Clausen BE, Schwarz T. Langerhans cells are required for UVR-induced immunosuppression. J Invest Dermatol 2010; 130: 1419–1427.

    Article  CAS  PubMed  Google Scholar 

  15. Fukunaga A, Khaskhely NM, Ma Y, et al. Langerhans cells serve as immunoregulatory cells by activating NKT cells. J Immunol 2010; 185: 4633–4640.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kaplan DH. In vivo function of Langerhans cells and dermal dendritic cells. Immunol Today 2010; 31: 446–451.

    CAS  Google Scholar 

  17. Klechevsky E, Morita R, Liu M, et al. Functional specializations of human epidermal Langerhans cells and CD14+ dermal dendritic cells. Immunity 2008; 29: 497–510.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Cumberbatch M, Clelland K, Dearman RJ, Kimber I. Impact of cutaneous IL-10 on resident epidermal Langerhans cells and the development of polarized immune responses. J Immunol 2005; 175: 43–50.

    Article  CAS  PubMed  Google Scholar 

  19. Igyarto BZ, Haley K, Ortner D, et al. Skin-resident murine dendritic cell subsets promote distinct and opposing antigenic-specific T helper cell responses. Immunity 2011; 35: 260–272.

    Article  CAS  PubMed  Google Scholar 

  20. Loser K, Bissert S. Dendritic cells and T cells in the regulation of cutaneous immunity. Adv Dermatol 2007; 23: 307–333.

    Article  PubMed  Google Scholar 

  21. Nestle FO, Di Meglio P, Qin JZ, Nickoloff BJ. Skin immune sentinels in health and disease. Nat Rev Immunol 2009; 9: 679–691.

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Strid J, Tigelaar RE, Hayday AC. Skin immune surveillance by T cells - a new order? Semin Immunol 2009; 21: 110–120.

    Article  CAS  PubMed  Google Scholar 

  23. Swamy M, Jamora C, Havran W, Hayday A. Epithelial decision makers: in search of the ‘epimmunome’. Nat Immunol 2010; 11: 656–665.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Senti G, von Moos S, Kundig TM. Epicutaneous allergen administration: is this the future of allergen-specific immunotherapy? Allergy 2011; 66: 798–809.

    Article  CAS  PubMed  Google Scholar 

  25. Mitragotri S. Immunization without needles. Nat Rev Immunol 2005; 5: 905–916.

    Article  CAS  PubMed  Google Scholar 

  26. Yagi H, Hashizume H, Horibe T, et al. Induction of therapeutically relevant cytotoxic T lymphocytes in humans by percutaneous peptide immunization. Cancer Res 2006; 66: 10136–10144.

    Article  CAS  PubMed  Google Scholar 

  27. Hjorth N, Roed-Petersen J. Occupational protein contact dermatitis in food handlers. Contact Derm 1976; 2: 28–42.

    Article  CAS  PubMed  Google Scholar 

  28. Smith Pease CK, White IR, Basketter DA. Skin as a route of exposure to protein allergens. Clin Exp Dermatol 2002; 27: 296–300.

    Article  CAS  PubMed  Google Scholar 

  29. Amaro C, Goossens A. Immunological occupational contact urticarial and contact dermatitis from proteins: a review. Contact Derm 2008; 58: 67–75.

    Article  PubMed  Google Scholar 

  30. Kanerva L, Vanhanen M. Occupational and allergic contact urticaria and rhinoconjunctivitis from a detergent protease. Contact Derm 2001; 45: 49–51.

    Article  CAS  PubMed  Google Scholar 

  31. Doutre M-S. Occupational contact urticarial and protein contact dermatitis. Eur J Dermatol 2005; 15: 419–424.

    PubMed  Google Scholar 

  32. Du Toit G, Katz Y, Sasieni P, et al. Early consumption of peanuts in infancy is associated with a low prevalence of peanut allergy. J Allergy Clin Immunol 2008; 122: 984–991.

    Article  PubMed  Google Scholar 

  33. Fox AT, Sasieni P, du Toit G, Syed H, Lack G. Household peanut consumption as a risk factor for the development of peanut allergy. J Allergy Clin Immunol 2009; 123: 417–423.

    Article  CAS  PubMed  Google Scholar 

  34. Chan SMH, Turcanu V, Stephen AC, Fox AT, Grieve AP, Lack G. Cutaneous lymphocyte antigen and α4β7 T-lymphocyte responses are associated with peanut allergy and tolerance in children. Allergy 2012; 67: 336–342.

    Article  CAS  PubMed  Google Scholar 

  35. Lack G. Update on risk factors for food allergy. J Allergy Clin Immunol 2012; 129: 1187–1197.

    Article  PubMed  Google Scholar 

  36. Strid J, Thomson M, Hourihane J, Kimber I, Strobel S. A novel model of sensitization and oral tolerance to peanut protein. Immunology 2004; 113: 293–303.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Beck LA, Leung DYM. Allergen sensitization through the skin induces systemic allergic responses. J Allergy Clin Immunol 2000; 106: S258–S263.

    Article  CAS  PubMed  Google Scholar 

  38. Strid J, Hourihane J, Kimber I, Callard R, Strobel S. Epicutaneous exposure to peanut protein prevents oral tolerance and enhances allergic sensitization. Clin Exp Allergy 2005; 35: 757–766.

    Article  CAS  PubMed  Google Scholar 

  39. Hauser C, Snapper CM, Ohara J, Paul WE, Katz SI. T helper cells grown with hapten-modified cultured Langerhans cell produce interleukin 4 and stimulate IgE production by B cells. Eur J Immunol 1989; 19: 245–251.

    Article  CAS  PubMed  Google Scholar 

  40. Callard RE, Harper JI. The skin barrier, atopic dermatitis and allergy: a role for Langerhans cells. Trends Immunol 2007; 28: 294–298.

    Article  CAS  PubMed  Google Scholar 

  41. Strid J, Hourihane J, Kimber I, Callard R, Strobel S. Disruption of the stratum corneum allows potent epicutaneous immunization with protein antigens resulting in a dominant systemic Th2 response. Eur J Immunol 2004; 34: 2100–2109.

    Article  CAS  PubMed  Google Scholar 

  42. Herrick CA, Xu L, McKenzie ANJ, Tigelaar RE, Bottomly K. IL-13 is necessary, not simply sufficient, for epicutaneously induced Th2 responses to soluble protein antigen. J Immunol 2003; 170: 2488–2495.

    Article  CAS  PubMed  Google Scholar 

  43. Holgate ST. The epithelium takes centre stage in asthma and atopic dermatitis. Trends Immunol 2007; 28: 248–251.

    Article  CAS  PubMed  Google Scholar 

  44. Larson RP, Comeau MR, Ziegler SF. Allergen-specific CD4 T cells respond indirectly to thymic lymphopoietin to promote allergic responses in the skin. J Immunol 2013; 190: 4474–4477.

    Article  CAS  PubMed  Google Scholar 

  45. Strid J, Sobolev O, Zafirova B, Polic B, Hayday A. The intraepithelial T cell response to NKG2D ligands links lymphoid stress surveillance to atopy. Science 2011; 334: 1293–1297.

    Article  CAS  PubMed  Google Scholar 

  46. Yang H, Chiang BL. Novel approaches to food allergy. Clin Rev Allergy Immunol 2013; Epub

  47. Cox L, Compalati E, Kundig T, Larche M. New directions in immunotherapy. Curr Allergy Asthma Rep 2013; 13: 178–195.

    Article  CAS  PubMed  Google Scholar 

  48. Dioszeghy V, Mondoulet L, Dhelft V, et al. Epicutaneous immunotherapy results in rapid allergen uptake by dendritic cells through intact skin and downregulates the allergen-specific response in sensitized mice. J Immunol 2011; 186: 5629–5637.

    Article  CAS  PubMed  Google Scholar 

  49. Mondoulet L, Dioszeghy V, Puteaux E, et al. Intact skin and not stripped skin is crucial for the safety and efficacy of peanut epicutaneous immunotherapy in mice. Clin Transl Allergy 2012: 22–26.

    Google Scholar 

  50. Sparber F, Tripp CH, Hermann M, Romani N, Stoitzner P. Langerhans cells and dermal dendritic cells capture protein antigens in the skin: possible targets for vaccination through the skin. Immunobiol 2010; 15: 770–779.

    Article  Google Scholar 

  51. Cumberbatch M, Dearman RJ, Uribe-Luna S, Headon DR, Ward PP, Conneely OM. Regulation of epidermal Langerhans cell migration by lactoferrin. Immunology 2000; 100: 21–28.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  52. Almond R, Flanagan BF, Antonopoulos A, et al. Differential immunogenicity and allergenicity of native and recombinant human lactoferrins: role of glycosylation. Eur J Immunol 2013; 43: 170–181.

    Article  CAS  PubMed  Google Scholar 

  53. Griffiths CEM, Cumberbatch M, Tucker SC, et al. Exogenous topical lactoferrin inhibits allergen-induced Langerhans cell migration and cutaneous inflammation in humans. Br J Dermatol 2001; 144: 715–725.

    Article  CAS  PubMed  Google Scholar 

  54. Cumberbatch M, Bhushan M, Dearman RJ, Kimber I, Griffiths CEM. IL-1β-induced Langerhans cell migration and TNF-α production in human skin: regulation by lactoferrin. Clin Exp. Immunol 2003; 132: 352–359.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian Kimber.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kimber, I., Griffiths, C.E.M., Basketter, D.A. et al. Epicutaneous exposure to proteins and skin immune function. Eur J Dermatol 24, 10–14 (2014). https://doi.org/10.1684/ejd.2013.2187

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ejd.2013.2187

Keywords

Navigation