Skip to main content
Log in

IL-17A induction of ADAMTS-5 in differentiated THP-1 cells is modulated by the ERK signaling pathway

  • Original Article
  • Published:
European Cytokine Network

Abstract

Atherosclerosis is initiated when lipoproteins are trapped by proteoglycans in the arterial intima. Macrophages play a vital role in this disease, especially in the formation of foam cells and the regulation of proinflammatory responses. They also participate in plaque stabilization through the secretion of matrix metalloproteinases. Studies have reported the role of ADAMTS proteases in osteoarthritis and atherosclerotic lesions. In the present study, we have studied the effect of interleukin-17A (IL-17A) on the expression of ADAMTS-5 in the macrophage cell line THP-1. The results show that the mRNA and protein expression levels of ADAMTS-5 were significantly upregulated when differentiated THP-1 cells were treated with 100 ng/mL of IL-17A for 24 h with maximum ADAMTS-5 mRNA expression levels obtained at 8 h of stimulation. Subsequent inhibition studies showed that IL-17A upregulation of ADAMTS-5 was mediated through ERK and JNK pathways in THP-1 cells. Phosphorylation studies revealed that the expression of ADAMTS-5 transcripts was upregulated by IL-17A through the activation of p-c-Raf (S338), p-MEK1/2 (Ser217/221), p-p44/42 MAPK (Thr202/Tyr204), and p-Elk1 (Ser383). ERK1/2 siRNA transfection further confirmed that the ERK pathway is involved in the expression of ADAMTS-5 in IL-17A-stimulated THP-1 cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bobryshev YV, Ivanova EA, Chistiakov DA, Nikiforov NG, Orekhov AN. Macrophages and their role in atherosclerosis: pathophysiology and transcriptome analysis. Biomed Res Int 2016; 2016:9582430.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  2. Jerome WG. Lysosomes, cholesterol and atherosclerosis. Clin Lipidol 2010; 5:853.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Newby AC, George SJ, Ismail Y, Johnson JL, Sala-Newby GB, Thomas AC. Vulnerable atherosclerotic plaque metalloproteinases and foam cell phenotypes. Thromb Haemost 2009; 101:1006.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Moore KJ, Sheedy FJ, Fisher E. Macrophages in atherosclerosis: a dynamic balance. Nat Rev Immunol 2013; 13:709.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kelwick R, Desanlis I, Wheeler GN, Edwards DR. The ADAMTS (a disintegrin and metalloproteinase with thrombospondin motifs) family. Genome Biol 2015; 16:113.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Verma P, Dalal K. ADAMTS-4 and ADAMTS-5: key enzymes in osteoarthritis. J Cell Biochem 2011; 112:3507.

    Article  CAS  PubMed  Google Scholar 

  7. Lee CW, Hwang I, Park C-S, et al. Comparison of ADAMTS-1, -4 and -5 expression in culprit plaques between acute myocardial infarction and stable angina. J Clin Pathol 2011; 64:399.

    Article  PubMed  Google Scholar 

  8. Didangelos A, Mayr U, Monaco C, Mayr M. Novel role of ADAMTS-5 protein in proteoglycan turnover and lipoprotein retention in atherosclerosis. J Biol Chem 2012; 287:19341.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Ait-Oufella H, Taleb S, Mallat Z, Tedgui A. Recent advances on the role of cytokines in atherosclerosis. Arterioscler Thromb Vasc Biol 2011; 31:969.

    Article  CAS  PubMed  Google Scholar 

  10. McLaren JE, Michael DR, Ashlin TG, Ramji DP. Cytokines, macrophage lipid metabolism and foam cells: implications for cardiovascular disease therapy. Prog Lipid Res 2011; 50:331.

    Article  CAS  PubMed  Google Scholar 

  11. Moss JWE, Ramji DP. Cytokines: roles in atherosclerosis disease progression and potential therapeutic targets. Future Med Chem 2016; 8:1317.

    Article  CAS  PubMed  Google Scholar 

  12. Li X, Bechara R, Zhao J, McGeachy M, Gaffen S. IL-17 receptor-based signaling and implications for disease. Nat Immunol 2019; 20:1594.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Smith E, Prasad K-MR, Butcher M, et al. Blockade of interleukin-17A results in reduced atherosclerosis in apolipoprotein E-deficient mice. Circulation 2010; 121:1746.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Erbel C, Chen L, Bea F, et al. Inhibition of IL-17A attenuates atherosclerotic lesion development in apoE-deficient mice. J Immunol 2009; 183:8167.

    Article  CAS  PubMed  Google Scholar 

  15. Ashlin TG, Kwan APL, Ramji DP. Regulation of ADAMTS-1, -4 and -5 expression in human macrophages: Differential regulation by key cytokines implicated in atherosclerosis and novel synergism between TL1A and IL-17. Cytokine 2013; 64:234.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Daigneault M, Preston JA, Marriott HM, Whyte MKB, Dockrell DH. The identification of markers of macrophage differentiation in PMA-stimulated THP-1 cells and monocytederived macrophages. PLoS One 2010; 5(1):e8668.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Ong MHL, Wong HK, Tengku-Muhammad TS, Choo QC, Chew CH. Pro-atherogenic proteoglycanase ADAMTS-1 is down-regulated by lauric acid through PI3K and JNK signaling pathways in THP-1 derived macrophages. Mol Biol Rep 2019; 46:2631.

    Article  CAS  PubMed  Google Scholar 

  18. Aranda PS, Lajoie DM, Jorcyk CL. Bleach gel: a simple agarose gel for analyzing RNA quality. Electrophoresis 2012; 33:366.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Onishi RM, Gaffen SL. Interleukin-17 and its target genes: mechanisms of interleukin-17 function in disease. Immunology 2010; 129:311.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Velichko S, Zhou X, Zhu L, Anderson JD, Wu R, Chen Y. A novel nuclear function for the interleukin-17 signaling adaptor protein Act1. PLoS One 2016; 11:e0163323.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. Wang J, Markova D, Anderson DG, Zheng Z, Shapiro IM, Risbud MV. TNF-α and IL-1β promote a disintegrin-like and metalloprotease with thrombospondin type I motif-5-mediated aggrecan degradation through syndecan-4 in intervertebral disc. J Biol Chem 2011; 286:39738.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chiricozzi A, Guttman-Yassky E, Suárez-Fariñas M, et al. Integrative responses to IL-17 and TNF-α in human keratinocytes account for key inflammatory pathogenic circuits in psoriasis. J Invest Dermatol 2011; 131:677.

    Article  CAS  PubMed  Google Scholar 

  23. Johnston A, Guzman AM, Swindell WR, Wang F, Kang S, Gudjonsson JE. Early tissue responses in psoriasis to the antitumour necrosis factor-a biologic etanercept suggest reduced interleukin-17 receptor expression and signalling. Br J Dermatol 2014; 171:97.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Tabeian H, Betti BF, dos Santos Cirqueira C, et al. IL-1β damages fibrocartilage and upregulates mmp-13 expression in fibrochondrocytes in the condyle of the temporomandibular joint. Int J Mol Sci 2019; 20:2260.

    Article  CAS  PubMed Central  Google Scholar 

  25. Goepfert A, Lehmann S, Wirth E, Rondeau JM. The human IL-17A/F heterodimer: a two-faced cytokine with unique receptor recognition properties. Sci Rep 2017; 7(1):8906.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  26. Gui T, Sun Y, Shimokado A, Muragaki Y. The roles of mitogen-activated protein kinase pathways in TGF- β -induced epithelial-mesenchymal transition. J Signal Transduct 2012; 2012:1.

    Article  CAS  Google Scholar 

  27. Kobayashi H, Hirata M, Saito T, Itoh S, Chung U, Kawaguchi H. Transcriptional induction of ADAMTS5 protein by nuclear factor-κB (NF-κB) family member RelA/p65 in chondrocytes during osteoarthritis development. J Biol Chem 2013; 288:28620.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Yaykasli KO, Hatipoglu OF, Yaykasli E, et al. Leptin induces ADAMTS-4, ADAMTS-5, and ADAMTS-9 genes expression by mitogen-activated protein kinases and NF-κB signaling pathways in human chondrocytes. Cell Biol Int 2015; 39:104.

    Article  CAS  PubMed  Google Scholar 

  29. Wang P, Mao Z, Pan Q, et al. Histone deacetylase-4 and histone deacetylase-8 regulate interleukin-1β-induced cartilage catabolic degradation through MAPK/JNK and ERK pathways. Int J Mol Med 2018; 41:2117.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Feng Z-Y, He Z-N, Zhang B, Chen Z. Osteoprotegerin promotes the proliferation of chondrocytes and affects the expression of ADAMTS-5 and TIMP-4 through MEK/ERK signaling. Mol Med Rep 2013; 8:1669.

    Article  CAS  PubMed  Google Scholar 

  31. Sylvester J, Liacini A, Li W, Zafarullah M. Interleukin-17 signal transduction pathways implicated in inducing matrix metallo-proteinase-3, -13 and aggrecanase-1 genes in articular chondrocytes. Cell Signal 2004; 16:469.

    Article  CAS  PubMed  Google Scholar 

  32. Wu PK, Park JI. MEK1/2 inhibitors: molecular activity and resistance mechanisms. Semin Oncol 2015; 42:849.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Diaz B, Barnard D, Filson A, MacDonald S, King A, Marshall M. Phosphorylation of Raf-1 serine 338-serine 339 is an essential regulatory event for Ras-dependent activation and biological signaling. Mol Cell Biol 1997; 17:4509.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Moelling K, Schad K, Bosse M, Zimmermann S, Schweneker M. Regulation of Raf-Akt Cross-talk. J Biol Chem 2002; 277:31099.

    Article  CAS  PubMed  Google Scholar 

  35. Goetz CA, O’Neil JJ, Farrar MA. Membrane localization, oligomerization, and phosphorylation are required for optimal raf activation. J Biol Chem 2003; 278:51184.

    Article  CAS  PubMed  Google Scholar 

  36. Wang Z, Fu M, Wang L, et al. p21-activated kinase 1 (PAK1) can promote ERK activation in a kinase-independent manner. J Biol Chem 2013; 288:20093.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Urasaki Y, Fiscus RR, Le TT. Detection of the cell cycle-regulated negative feedback phosphorylation of mitogen-activated protein kinases in breast carcinoma using nanofluidic proteomics. Sci Rep 2018; 8:9991.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  38. Guégan J-P, Frémin C, Baffet G. The MAPK MEK1/2-ERK1/2 pathway and its implication in hepatocyte cell cycle control. Int J Hepatol 2012; 2012:1.

    Article  Google Scholar 

  39. Kraus I, Besong Agbo D, Otto M, Wiltfang J, Klafki H. Detection and differentiation of threonine- and tyrosine-monophosphorylated forms of ERK1/2 by capillary isoelectric focusing-immunoassay. Sci Rep 2015; 5:12767.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lai S, Pelech S. Regulatory roles of conserved phosphorylation sites in the activation T-loop of the MAP kinase ERK1. Mol Biol Cell 2016; 27:1040.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Mutlak M, Kehat I. Extracellular signal-regulated kinases 1/2 as regulators of cardiac hypertrophy. Front Pharmacol 2015; 6:149.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. Singh D, Laxmi A. Transcriptional regulation of drought response: a tortuous network of transcriptional factors. Front Plant Sci 2015; 6:895.

    PubMed  PubMed Central  Google Scholar 

  43. Besnard A, Galan-Rodriguez B, Vanhoutte P, Caboche J. Elk-1 a transcription factor with multiple facets in the brain. Front Neurosci 2011; 5:35.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  44. Thirunavukkarasu K, Pei Y, Wei T. Characterization of the human ADAMTS-5 (aggrecanase-2) gene promoter. Mol Biol Rep 2007; 34:225.

    Article  CAS  PubMed  Google Scholar 

  45. Ellman MB, Yan D, Ahmadinia K, Chen D, An HS, Im HJ. Fibroblast growth factor control of cartilage homeostasis. J Cell Biochem 2013; 114:735.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Si H, Peng C, Li J, et al. RNAi-mediated knockdown of ERK1/2 inhibits cell proliferation and invasion and increases chemosensitivity to cisplatin in human osteosarcoma U2-OS cells in vitro. Int J Oncol 2012; 40:1291.

    CAS  PubMed  Google Scholar 

  47. von Thun A, Birtwistle M, Kalna G, et al. ERK2 drives tumour cell migration in threedimensional microenvironments by suppressing expression of Rab17 and liprin-β2. J Cell Sci 2012; 125:1465.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Choy Hoong Chew.

Additional information

Disclosures

No competing financial interests exist.

Funding

This work was supported by the Universiti Tunku Abdul Rahman Research Fund (UTARRF) (6200/CD7); and the Malaysia Toray Science Foundation (MTSF) (4417/ E01).

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thou, E.M.H., Choo, Q.C. & Chew, C.H. IL-17A induction of ADAMTS-5 in differentiated THP-1 cells is modulated by the ERK signaling pathway. Eur Cytokine Netw 31, 59–67 (2020). https://doi.org/10.1684/ecn.2020.0446

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ecn.2020.0446

Key words

Navigation