Skip to main content
Log in

When wrinkles appear on the immune system can it be reversed?

  • Review
  • Published:
European Cytokine Network Aims and scope

Abstract

During aging, physiological and physical frailty occur, which is accompanied by a decline in adaptive and innate immunity, termed ‘immunosenescence’ characterized by marked changes in the composition, function, and competence of the human immune system. Moreover, the capabilities of the immune system to defend the human body against infections, to detect and destruct malignant or autoreactive cells decline, resulting in an increase in the susceptibility to infection, development of cancer, as well as autoimmune disorders. The study of age-related changes in immune function is an important area of investigation. In this review, the function of the immune system during aging, as well as the different ways to rejuvenate the aging immune system, is explored, as medical intervention, balanced nutrition, and a healthy life style will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Keenan CR, Allan RS. Epigenomic drivers of immune dysfunction in aging. Aging Cell 2019; 18(1)s:e12878.

    Google Scholar 

  2. Nikolich-Zugich J. The twilight of immunity: emerging concepts in aging of the immune system. Nat Immunol 2018; 19: 10–9.

    Article  CAS  PubMed  Google Scholar 

  3. Weyand CM, Yang Z, Goronzy JJ. T-cell aging in rheumatoid arthritis. Curr Opin Rheumatol 2014; 26(1):93–100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Agarwal S, Busse PJ. Innate and adaptive immunosenescence. Ann Allergy Asthma Immunol 2010; 104(3):183.

    Article  CAS  PubMed  Google Scholar 

  5. Pence DB, Yarbro RJ. Classical monocytes maintain ex vivo glycolytic metabolism and early but not later inflammatory responses in older adults. Immun Ageing 2019; 16: 3.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Abd El-Kader SM, Al-Shreef FM. Impact of aerobic exercises on selected inflammatory markers and immune system response among patients with sickle cell anemia in asymptomatic steady state. Afr Health Sci 2018; 18(1):111–9.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Campos C, Pera A, Sanchez-Correa B, et al. Effect of age and CMV on NK cell subpopulations. Exp Gerontol 2014; 54: 130–7.

    Article  CAS  PubMed  Google Scholar 

  8. Wagner A, Garner-Spitzer E, Jasinska J, et al. Age-related differences in humoral and cellular immune responses after primary immunisation: indications for stratified vaccination schedules. Sci Rep 2018; 8(1):9825.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Norman DC. Fever in the elderly. Clin Infect Dis 2000; 31(1):148.

    Article  CAS  PubMed  Google Scholar 

  10. Morrison SJ, Spradling AC. Stem cells and niches: mechanisms that promote stem cell maintenance throughout life. Cell 2008; 132: 598–611.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. de Haan G, Lazare SS. Aging of hematopoietic stem cells. Blood 2018; 131: 479–548.

    Article  CAS  PubMed  Google Scholar 

  12. Weng NP. Aging of the immune system: How much can the adaptive immune system adapt? Immunity 2006; 24: 495–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Geiger H, Denkinger M, Schirmbeck R. Hematopoietic stem cell aging. Curr Opin Immunol 2014; 29: 86–92.

    Article  CAS  PubMed  Google Scholar 

  14. Ogawa T, Kitagawa M, Hirokawa K. Age-related changes of human bone marrow: a histometric estimation of proliferative cells, apoptotic cells, T cells, B cells and macrophages. Mech Ageing Dev 2000; 117: 57–68.

    Article  CAS  PubMed  Google Scholar 

  15. Lee J, Suk Ran Y, Inpyo C, Haiyoung J. Causes and mechanisms of hematopoietic stem cell aging. Int J Mol Sci 2019; 20(6):1272.

    Article  CAS  PubMed Central  Google Scholar 

  16. Rundberg Nilsson A, Soneji S, Adolfsson S, Bryder D, Pronk CJ. Human and murine hematopoietic stem cell aging is associated with functional impairments and intrinsic megakaryocytic/erythroid bias. PLoS One 2016; 11: e0158369.

  17. Li T, Zhou ZW, Ju Z, Wang ZQ. DNA damage response in hematopoietic stem cell ageing. Genom roteom Bioinform 2016; 14: 147–54.

    Article  Google Scholar 

  18. Lydyard P, Whelan A, Fanger M. BIOS Instant Notes in Immunology. Taylor & Francis, 2011.

    Google Scholar 

  19. McDonald DR, Levy O. Innate Immunity Clinical Immunology(Fifth Edition). Principles and Practice 2019

    Google Scholar 

  20. Vesely MD, Kershaw MH, Schreiber RD, Smyth MJ. Natural innate and adaptive immunity to cancer. Annu Rev Immunol 2011; 29(1):235–71.

    Article  CAS  PubMed  Google Scholar 

  21. Kinn PM, Holdren GO, Westermeyer BA, et al. Age-dependent variation in cytokines, chemokines, and biologic analytes rinsed from the surface of healthy human skin. Sci Rep 2015; 5(1):10472.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chilosi M, Facchetti F, Calio` A, et al. Oncogene-induced senescence distinguishes indolent from aggressive forms of pulmonary and non-pulmonary Langerhans cell histiocytosis. Leuk Lymphoma 2014; 55(11):2620–6.

    Article  CAS  PubMed  Google Scholar 

  23. Grewe M. Chronological ageing and photoageing of dendritic cells. Clin Exp Dermatol 2001; 26: 608–12.

    Article  CAS  PubMed  Google Scholar 

  24. Kim SW, Mo JH, Kim JW, et al. Change of nasal function with aging in Korean. Acta Otolaryngol 2007; 558: 90–4.

    Google Scholar 

  25. Makrantonaki E, Zouboulis CC. Molecular mechanisms of skin aging: state of the art. AnnNY Acad Sci 2007; 1119: 40–50.

    Article  CAS  Google Scholar 

  26. Davalos AR, Coppe JP, Campisi J, Desprez PY. Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 2010; 29(2):273–83.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shi C, Pamer EG. Monocyte recruitment during infection and inflammation. Nat Rev Immunol 2011; 11(11):762–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Metcalf TU, Wilkinson PA, Cameron MJ, et al. Human monocyte subsets are transcriptionally and functionally altered in aging in response to pattern recognition receptor agonists. J Immunol 2017; 199: 1405–17.

    Article  CAS  PubMed  Google Scholar 

  29. Sebastian C, Herrero C, Serr AM, Lio Beras J, Blasco MA, Celada A. Telomere shortening and oxidative stress in aged macrophages results in impaired STAT5a phosphorylation. J Immunol 2009; 183(4):2356–64.

    Article  CAS  PubMed  Google Scholar 

  30. Seidler S, Zimmermann HW, Bartneck M, Trautwein C, Tacke F. Age-dependent alterations of monocyte subsets and monocyte-related chemokine pathways in healthy adults. BMC Immunol 2010; 21: 11–30.

    Google Scholar 

  31. Ong SM, Hadadi E, Dang TM, et al. The pro-inflammatory phenotype of the human non-classical monocyte subset is attributed to senescence. Cell Death Dis 2018; 9: 266.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Chen MM, Palmer JL, Plackett TP, Deburghgraeve CR, Kovacs EJ. Agerelated differences in the neutrophil response to pulmonary pseudomonas infection. Exp Gerontol 2014; 54(1):42–6.

    Article  PubMed  CAS  Google Scholar 

  33. Alonso-Fernandez P, Puerto M, Maté I, Reibera JM, de la Fuente M. Neutrophils of centenarians show function levels similar to those of young adults. J Am Geriatr Soc 2008; 56: 2244–51.

    Article  PubMed  Google Scholar 

  34. Hazeldine J, Harris P, Chapple IL, et al. Impaired neutrophil extracellular trap formation: a novel defect in the innate immune system of aged individuals. Aging Cell 2014; 13(4):690–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Brinkmann V, Zychlinsky A. Beneficial suicide: why neutrophils die to make NETs. Nat Rev Microbiol 2007; 5(8):577–82.

    Article  CAS  PubMed  Google Scholar 

  36. Naccache PH, Lefebvre JS. A straight neutrophil path to healthy aging? Blood 2014; 123: 154–6.

    Article  CAS  PubMed  Google Scholar 

  37. Sapey E, Greenwood H, Walton G, et al. Phosphoinositide 3-kinase inhibitio n restores neutrophil accuracy in the elderly:toward targeted treatments for immunosenescence. Blood 2014; 123: 239–48.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Brinkmann V, Reichard U, Goosmann C, et al. Neutrophil extracellular traps kill bacteria. Science 2004; 303(5663):1532–5.

    Article  CAS  PubMed  Google Scholar 

  39. Fuchs TA, Brill A, Wagner DD. Neutrophil extracellular trap(NET) impact on deep vein thrombosis. Arterioscler Thromb Vasc Biol 2012; 32: 1777–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Qian F, Wang X, Zhang L, et al. Age-associated elevation in TLR5 leads to increased inflammatory responses in the elderly. Aging Cell 2012; 11: 104–10.

    Article  CAS  PubMed  Google Scholar 

  41. Wessels I, Jansen J, Rink L, Uciechowski P. Immunosenescence of polymorphonuclear neutrophils. Sci World J 2010; 10:145–60.

    Article  CAS  Google Scholar 

  42. Agrawal A, Gupta S. Impact of aging on dendritic cell functions in humans. Ageing Res Rev 2011; 10: 336–45.

    Article  CAS  PubMed  Google Scholar 

  43. Gupta S. Role of dendritic cells in innate and adaptive immune response in human aging. Exp Gerontol 2014; 54(1):47–52.

    Article  CAS  PubMed  Google Scholar 

  44. Del Prete A, Vermi W, Dander E, et al. Defective dendritic cell migration and activation of adaptive immunity in PI3Kcdeficient mice. EMBO J 2004; 23: 3505–15.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. Agrawal A, Agrawal S, Cao JN, Su H, Osann K, Gupta S. Altered innate immune functioning of dendritic cells in elderly humans: a role of phosphoinositide 3-kinase-signaling pathway. J Immunol 2007; 178: 6912–22.

    Article  CAS  PubMed  Google Scholar 

  46. Chougnet CA, Thacker RI, Shehata HM, et al. Loss of phagocytic and antigen cross-presenting capacity in aging dendritic cells is associated with mitochondrial dysfunction. J Immunol 2015; 195(6):2624–32.

    Article  CAS  PubMed  Google Scholar 

  47. Zacca ER, Crespo MI, Acland RP, et al. Aging impairs the ability of conventional dendritic cells to cross-prime CD8+ T cells upon stimulation with a TLR7 ligand. PLoS One 2015; 10(10):e0140672.

    Google Scholar 

  48. Liu WM, Nahar TE, Jacobi RH, et al. Impaired production of TNF-alpha by dendritic cells of older adults leads to a lower CD8+ T cell response against influenza. Vaccine 2012; 30(9):1659–66.

    Article  CAS  PubMed  Google Scholar 

  49. Przemska-Kosicka A, Childs CE, Maidens C, et al. Age-related changes in the natural killer cell response to seasonal influenza vaccination are not influenced by a synbiotic: a randomised controlled trial. Front Immunol 2018; 9: 591.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Weiskopf D, Weinberger B, Grubeck-Loebenstein B. The aging of the immune system. Transpl Int 2009; 22(11):1041–50.

    Article  CAS  PubMed  Google Scholar 

  51. Camous X, Pera A, Solana R, Larbi A. NK cells in healthy aging and age-associated diseases. J Biomed Biotechnol 2012; 2012: 195956.

  52. Almeida-Oliveira A, Smith-Carvalho M, Porto LC, et al. Agerelated changes in natural killer cell receptors from childhood through old age. Hum Immunol 2011; 72: 319–29.

    Article  CAS  PubMed  Google Scholar 

  53. Solana R, Campos C, Pera A, Tarazona R. Shaping of NK cell subsets by aging. Curr Opin Immunol 2014; 29: 56–61.

    Article  CAS  PubMed  Google Scholar 

  54. Hazeldine J, Hampson P, Lord JM. Reduced release and binding of perforin at the immunological synapse underlies the age-related decline in natural killer cell cytotoxicity. Aging Cell 2012; 11: 751–9.

    Article  CAS  PubMed  Google Scholar 

  55. Krishnaraj R. Senescence and cytokines modulate the NK cell expression. Mech Ageing Dev 1997; 96: 89–101.

    Article  CAS  PubMed  Google Scholar 

  56. Pietilä M, Neuvonen M, Borodulin K, Korpela K, Sievänen T, Tyrvainen L. Relationships between exposure to urban green spaces, physical activity and self-rated health. J Outdoor Recr Tou 2015; 10(1):44–54.

    Article  Google Scholar 

  57. Hazeldine J, Lord JM. The impact of ageing on natural killer cell function and potential consequences for health in older adults. Ageing Res Rev 2013; 12(4):1069–78.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Chiu BC, Martin BE, StolbergVR, Chensue SW. The host environment is responsible for aging related functional NK cell deficiency. J Immunol 2013; 191(9):4688–98.

    Article  CAS  PubMed  Google Scholar 

  59. Fiebich BL, Batista CRA, Saliba SW, Yousif NM, de Oliveira ACP. Role of Microglia TLRs in Neurodegeneration. Front Cell Neurosci 2018; 12: 329.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Montoya-Ortiz G. Immunosenescence, aging and systemic lupus erythematous. Autoimmune Dis 2013; 267078.

    Google Scholar 

  61. Kong KF, Delroux K, Wang X, et al. Dysregulation of TLR3 impairs the innate immune response to West Nile virus in the elderly. J Virol 2008; 82(15):7613–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Boche D, Perry VH, Nicoll JAR. Review: activation patterns of microglia and their identification in the human brain. Neuropathol Appl Neurobiol 2013; 39: 3–18.

    Article  CAS  PubMed  Google Scholar 

  63. Calvo-Rodríguez M, de la Fuente C, García-Durillo M, García-Rodríguez C, Villalobos C, Núñez L. Aging and amyloid ß oligomers enhance TLR4 expression, LPSinduced Ca2+ responses and neuron cell death in cultured rat hippocampal neurons. J Neuroinflammation 2017; 14(1):24.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  64. Shaw AC, Joshi S, Greenwood H, Panda A, Lord MJ. Aging of the innate immune system. Curr Opin Immunol 2010; 22(4):507–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Stervbo Bozzetti C, Baron U, Jürchott K, et al. Effects of aging on human leukocytes (part II): immunophenotyping of adaptive immune B and T cell subsets. Age 2015; 37(5):93.

    Article  PubMed  CAS  Google Scholar 

  66. Silverstein AM. Autoimmunity: a history of the early struggle for recognition. In: Mackay IR, Rose NR, (eds). The Autoimmune Diseases (chapter 2). Academic Press, 2014: Academic Press; 2014. p..

    Google Scholar 

  67. Faragher R, Frasca D, Remarque E, et al. Better immunity in later life: a position paper. Age 2014; 36(3):9619.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Duggal AN, Pollock RD, LazarusNR, Harridge S, Lord JM. Major features of immunesenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell 2018; 7(2):e12750.

    Google Scholar 

  69. Griffith AV, Venables T, Shi J, et al. Metabolic damage and premature thymus aging caused by stromal catalase deficiency. Cell reports 2015; 12(7):1071–9.

    Article  CAS  PubMed  Google Scholar 

  70. Palmer DB. The effect of age on thymic function. Frontiers in immunology 2013; 4: 316.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  71. Strioga M, Pasukoniene V, Characiejus D. CD8 + CD28 and CD8 + CD57 + T cells and their role in health and disease. Immunology 2011; 134: 17–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kollar S, Berta L, Vasarhelyi ZE, et al. Impact of aging on calcium influx and potassium channel characteristics of T lymphocytes. Oncotarget 2015; 6(15):13750–6.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Deruy E, Nassour J, Martin N, et al. Level of macroautophagy drives senescent keratinocytes into cell death or neoplastic evasion. Cell Death Dis 2014; 5(1):e1577.

    Google Scholar 

  74. Jing H, Lee S. NF-kappaB in cellular senescence and cancer treatment. Mol Cells 2014; 37(3):189–95.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Ferrando-Martinez S, Ruiz-Mateos E, Hernandez A, et al. Agerelated deregulation of naive T cell homeostasis in elderly humans. Age 2011; 33(2):197–207.

    Article  CAS  PubMed  Google Scholar 

  76. Li G, Yu M, Lee WW, et al. Decline in miR-181a expression with age impairs T cell receptor sensitivity by increasing DUSP6 activity. Nat Med 2012; 18(10):1518–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Mondal AM, Horikawa I, Pine SR, et al. p53 isoforms regulate aging- and tumor-associated replicative senescence in T lymphocytes. J Clin Immunol 2013; 123(12):5247–57.

    CAS  Google Scholar 

  78. Henson SM, Macaulay R, Riddell NE, Nunn CJ, Akbar AN. Blockade of PD-1 or p38 MAP kinase signaling enhances senescent human CD8(+) T-cell proliferation by distinct pathways. Eur J Immunol 2015; 45: 1441–51.

    Article  CAS  PubMed  Google Scholar 

  79. Lanna A, Gomes DC, Muller-Durovic B, et al. A sestrindependent Erk-Jnk-p38 MAPK activation complex inhibits immunity during aging. Nat Immunol 2017; 18: 354–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lanna A, Henson SM, Escors D, Akbar AN. The kinase p38 activated by the metabolic regulator AMPK and scaffold TAB 1 drives the senescence of human T cells. Nat Immunol 2014; 15:965–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Comans-Bitter WM, de Groot R, van den Beemd R, et al. Immunophenotyping of blood lymphocytes in childhood. Reference values for lymphocyte subpopulations. J Pediatr 1997; 3: 388–93.

    Article  Google Scholar 

  82. Booth NJ, Akbar AN, Vukmanovic-Stejic M. Regulation of adaptive immunity in the elderly. In: Thiel A, ed. Immunosenescence. Basel: Springer Basel.

  83. Maijo M, Clements SJ, Ivory K, Nicoletti C, Carding SR. Nutrition, diet and immunosenescence. Mech Ageing Dev 2014; 136–137: 116–28.

    Google Scholar 

  84. Montecino-Rodriguez E, Berent-Maoz B, Dorshkind K. Causes, consequences and reversal of immune system aging. J Clin Investig 2013; 123(3):958–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Chou JP, Effros RB. T cell replicative senescence in human aging. Curr Pharm Des 2013; 19(9):1680–98.

    CAS  PubMed  PubMed Central  Google Scholar 

  86. Ovadya Y, Tomer Landsberger T, Hanna Leins H, et al. Impaired immune surveillance accelerates accumulation of senescent cells and aging. Nat Commun 2018; 9: 5435.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Jagger A, Shimojima Y, Goronzy JJ, Weyand CM. Regulatory T cells and the immune aging process: a mini-review. Gerontology 2014; 60(2):130–7.

    Article  CAS  PubMed  Google Scholar 

  88. Hou PF, Zhu LJ, Chen XY, Qiu ZQ. Age-related changes in CD4 + CD25 + FOXP3+ regulatory T cells and their relationship with lung cancer. PLoS One 2017; 12: 173.

    Google Scholar 

  89. Fessler J, Ficjan A, Duftner C, Dejaco C. The impact of aging on regulatory T-cells. Front Immunol 2013; 4: 231.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Deng Y, Jing Y, Campbell AE, Gravenstein S. Age-related impaired type 1 T cell responses to influenza: reduced activation ex vivo, decreased expansion in CTL culture in vitro and blunted response to influenza vaccination in vivo in the elderly. J Immunol 2004; 172: 3437–46.

    Article  CAS  PubMed  Google Scholar 

  91. Schmitt V, Rink L, Uciechowski P. The Th17/Treg balance is disturbed during aging. Exp Gerontol 2013; 48: 1379–86.

    Article  CAS  PubMed  Google Scholar 

  92. Toda H, Araki K, Moritomo T, et al. Molecular biology of the cell;, 4th edition., New York and London: Garland Science.

  93. Fletcher JM, Vukmanovic-Stejic M, Dunne PJ, et al. Cytomegalovirus-specific CD4+ T cells in healthy carriers are continuously driven to replicative exhaustion. J Immunol 2005; 175(12):8218–25.

    Article  CAS  PubMed  Google Scholar 

  94. Alama I, Paweleca G. Aging, nutrition and immunity–their relationship and interaction. Nutr Aging 2012; 1: 151–65.

    Article  Google Scholar 

  95. Signer Robert AJ, Morrison Sean J. Mechanisms that regulate stem cell aging and life span. Cell Stem Cell 2013; 12: 152–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Cancro MP, Hao Y, Scholz JL, et al. B cells and aging:molecules and mechanisms. Trends Immunol 2009; 30(7):313–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Colonna-Romano G, Aquino A, Bulati M, et al. Memory B cell subpopulations in the aged. Rejuvenation Res 2006; 9: 149–52.

    Article  CAS  PubMed  Google Scholar 

  98. Frasca D, Blomberg BB. Effects of aging on B cell function. Curr Opin Immunol 2009; 21: 425–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Weksler ME. Changes in the B-cell repertoire with age. Vaccine 2000; 18(16):1624–8.

    Article  CAS  PubMed  Google Scholar 

  100. Duggal NA, Upton J, Phillips AC, Sapey E, Lord JM. An agerelated numerical and functional deficit in CD19(+) CD24(hi) CD38(hi) B cells is associated with an increase in systemic autoimmunity. Aging Cell 2012; 12: 873–81.

    Article  CAS  Google Scholar 

  101. Gibson KL, Wu Y-C, Barnett Y, et al. B cell diversity decreases in old age and is correlated with poor health status”. Aging Cell 2009; 8: 18–25.

    Article  CAS  PubMed  Google Scholar 

  102. Pritz T, Lair J, Ban M, et al. Plasma cell numbers decrease in bone marrow of old patients. Eur J Immunol 2015; 45(3):738–46.

    Article  CAS  PubMed  Google Scholar 

  103. Weinberger B. Vaccines for the elderly: current use and future challenges. Immun Aging 2018; 15: 13.

    Article  CAS  Google Scholar 

  104. Romanyukha AA, Yashin AI. Age related changes in population of peripheral T cells: towards a model of immunosenescence. Mech Ageing Dev 2003; 124: 433–44.

    Article  PubMed  Google Scholar 

  105. Duggal NA, Beswetherick A, Upton J, Hampson P, Phillips AC, Lord JM. Depressive symptoms in hip fracture patients are associated with reduced monocyte superoxide production. Exp Gerontol 2014; 54: 27–34.

    Article  CAS  PubMed  Google Scholar 

  106. Garbe K, Bratke K, Wagner S, Virchow JC, Lommatzsch M. Plasmacytoid dendritic cells and their Toll-like receptor 9 expression selectively decrease with age. Hum Immunol 2012; 73: 493–7.

    Article  CAS  PubMed  Google Scholar 

  107. Agrawal S, Ganguly S, Tran A, Sundaram P, Agrawal A. Retinoic acid treated human dendritic cells induce T regulatory cells via the expression of CD141 and GARP which is impaired with age. Ageing 2016; 8: 1223–35.

    Google Scholar 

  108. Minoda Y, Virshup I, Rojas IL, et al. Human CD141+ dendritic cell and CD1c+ dendritic cell undergo concordant early genetic programming after activation in humanized mice in vivo front. Immunol 2017; 8: 1419.

    Google Scholar 

  109. Shehata HM, Hoebe K, Chougnet CA. The aged nonhematopoietic environment impairs natural killer cell maturation and function. Aging Cell 2015; 14(2):191–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Le Garff-Tavernier M, Béziat V, Decocq J, et al. Human NK cells display major phenotypic and functional changes over the life span. Aging Cell 2010; 9: 527–35.

    Article  PubMed  CAS  Google Scholar 

  111. van Duin D, Mohanty S, Thomas V, et al. Age-associated defect in human TLR-1/2 function. J Immunol 2007; 178: 970–5.

    Article  CAS  PubMed  Google Scholar 

  112. Shaw AC, Panda A, Joshi SR, Qian F, Allore HG, Montgomery RR. Dysregulation of human Toll-like receptor function in aging. Ageing Res Rev 2011; 10(3):346–53.

    Article  CAS  PubMed  Google Scholar 

  113. Sapin MR, Etingen LE. The human immune system. Medicine 1996.

    Google Scholar 

  114. Consolini R, Legitimo A, Calleri A. Distribution of age related thymulin titres in normal subjects through the course of life. Clin Exp Immunol 2000; 121: 444–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Effros RB. Replicative senescence in the immune system:impact of the Hayflick limit on T-cell function in the elderly. Am J Hum Genet 1998; 62: 1003–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Globerson A, Effros RB. Aging of lymphocytes and lymphocytes in the aged. Immunol Today 2000; 21: 515–21.

    Article  CAS  PubMed  Google Scholar 

  117. Effros RB, Dagarag M, Spaulding C, Man J. The role of CD8+ T-cell replicative senescence in human aging. Immunol Rev 2005; 205(1):147–57.

    Article  CAS  PubMed  Google Scholar 

  118. Dorshkind K, Montecino-Rodriguez E, Signer RA. The ageing immune system: is it ever too old to become young again? Nat Rev Immunol 2009; 9: 57–62.

    Article  CAS  PubMed  Google Scholar 

  119. Buffa S, Pellicano M, Bulati M, et al. A novel B cell population revealed by a CD38/CD24 gating strategy: CD38(-)CD24(-) B cells in centenarian offspring and elderly people. Age 2013; 35(5):2009–24.

    Article  CAS  PubMed  Google Scholar 

  120. Jacobs TL, Epel ES, Lin J, et al. Intensive meditation training, immune cell telomerase activity and psychological mediators. Psychoneurol Endocr 2011; 36(5):664–81.

    Article  CAS  Google Scholar 

  121. Morgan N, Irwin MR, Chung M, Wang C. The effects of mindbody therapies on the immune system: meta-analysis. PLoS One 2014; 9(7):e100903.

    Google Scholar 

  122. Fan Y, Tang YY, Ma Y, Posner MI. Mucosal immunity modulated by integrative meditation in a dose-dependent fashion. J Altern Complement Med 2010; 16(2):151–5.

    Article  PubMed  Google Scholar 

  123. Falkenberg RI, Eising C, Peters ML. Yoga and immune system functioning: a systematic review of randomized controlled trials. J Behav Med 2018; 41(4):467–82.

    Article  CAS  PubMed  Google Scholar 

  124. Infante JR, Peran F, Rayo JI, et al. Levels of immune cells in transcendental meditation practitioners. Int J Yoga 2014; 7(2):147–51.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Carroll JE, Cole SW, Seeman TE, et al. Partial sleep deprivation activates the DNA damage response (DDR) and the senescence-associated secretory phenotype (SASP) in aged adult humans. Brain Behav Immun 2016; 51: 223–9.

    Article  CAS  PubMed  Google Scholar 

  126. Hampson P, Rossi A, Arora T, Lord JM, Taheri S. Sleep and immunity in older age. In: Bosch JA, Phillips AC, Lord JM, (eds). Immunosenescence: psychosocial and behavioral determinants. New York, NY: Springer New York.

  127. Besedovsky L, Lange T, Born J. Sleep and immune function. Pflugers Arch 2012; 463(1):121–37.

    Article  CAS  PubMed  Google Scholar 

  128. Li T, Ping Wang P, Wang SC, Wang YF. Approaches mediating oxytocin regulation of the immune system. Front Immunol 2016; 7: 693.

    PubMed  Google Scholar 

  129. Ponsonby A-L, Lucas RM, Van der Mei AF. UVR, vitamin D and three autoimmune diseases–multiple sclerosis, type 1 diabetes, rheumatoid arthritis. Photochem Photobiol 2005; 81:1267–75.

    Article  CAS  PubMed  Google Scholar 

  130. Grant WB. Hypothesis–ultraviolet-B irradiance and vitaminD reduce the risk of viral infections and thus their sequelae, including autoimmune diseases and some cancers. Photochem Photobiol 2008; 84: 356–65.

    Article  CAS  PubMed  Google Scholar 

  131. Phan TX, Jaruga B, Pingle SC, Bandyopadhyay BC, Ahern GP. Intrinsic photosensitivity enhances motility of T lymphocytes. Sci Rep 2016; 6: 39479.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Brenner IK, Castellani JW, Gabaree C, et al. Immune changes in humans during cold exposure: effects of prior heating and exercise. J Appl Physiol 1999; 87: 699–710.

    Article  CAS  PubMed  Google Scholar 

  133. Shevchuk NA, Radoja S. Possible stimulation of anti-tumor immunity using repeated cold stress: a hypothesis. Infect Agent Cancer 2007; 2: 20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  134. Burton D, Stolzing A. Cellular senescence: immunosurveillance and future immunotherapy. Ageing Res Rev 2018; 43: 17–25.

    Article  CAS  PubMed  Google Scholar 

  135. Choi IY, Lee C, Longo VD. Nutrition and fasting mimicking diets in the prevention and treatment of autoimmune diseases and immunosenescence. Mol Cell Endocrinol 2017; 455:4–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Cheng CW, Adams GB, Perin L, et al. Prolonged fasting reduces IGF-1/PKA to promote hematopoietic stem cell-based When wrinkles appear on the immune system can it be reversed? 13 regeneration and reverse immunosuppression. Cell Stem Cell 2014; 14(6):810–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Rangan P, Choi I, Wei M, et al. Fasting-mimicking diet modulates microbiota and promotes intestinal regeneration to reduce inflammatory bowel disease pathology. Cell Rep 2019; 26(10):2704–2719.e6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Lee C, Longo V. Dietary restriction with and without caloric restriction for healthy aging. Mol Cell Endocrinol 2017; 5(455):4–12.

    Google Scholar 

  139. Steven S, Taylor R. Restoring normoglycaemia by use of a very low calorie diet in long- and short-duration Type 2 diabetes. Diabet Med 2015; 32(9):1149–55.

    Article  CAS  PubMed  Google Scholar 

  140. Yang H, Youm YH, Dixit VD. Inhibition of thymic adipogenesis by caloric restriction is coupled with reduction in age-related thymic involution. J Immunol 2009; 183(5):3040–52.

    Article  CAS  PubMed  Google Scholar 

  141. Messaoudi I, Warner J, Fischer M, et al. Delay of T cell senescence by caloric restriction in aged long-lived nonhuman primates. Proc Natl Acad Sci U S A 2006; 103(51):19448–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Spaulding CC, Walford RL, Effros RB. Calorie restriction inhibits the age-related dysregulation of the cytokines TNFand IL-6 in C3B10RF1 mice. Mech Ageing Dev 1997; 93: 87–94.

    Article  CAS  PubMed  Google Scholar 

  143. Jolly CA. Dietary restriction and immune function. J Nutr 2004; 134: 1853–6.

    Article  CAS  PubMed  Google Scholar 

  144. Tang D, Tao S, Chen Z, Koliesnik LO, Calmes PG, Hoerr V. Dietary restriction improves repopulation but impairs lymphoid differentiation capacity of hematopoietic stem cells in early aging. J Exp Med 2016; 213: 535–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Qiu X, Brown K, Hirschey MD, Verdin E, Chen D. Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation. Cell Metab 2010; 12(6):662–7.

    Article  CAS  PubMed  Google Scholar 

  146. Oldways. What is the Mediterranean Diet? 2016. https://oldwayspt.org/traditional-diets/mediterranean-diet/what-mediterranean-diet

    Google Scholar 

  147. Casas R, Sacanella E, Urpí-Sardà M, et al. The effects of the Mediterranean diet on biomarkers of vascular wall inflammation and plaque vulnerability in subjects with high risk for cardiovascular disease. A randomized trial. PLoS One 2014; 9(6):e100084.

    Google Scholar 

  148. Clements SJ, Maijo M, Ivory K, Nicoletti C, Carding SR. Ageassociated decline in dendritic cell function and the impact of mediterranean diet intervention in elderly subjects. Front Nutr 2017; 4: 65.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  149. Fantuzzi G. Adipose tissue, adipokines, and infl ammation. J Allergy Clin Immunol 2005; 115(5):911–9.

    Article  CAS  PubMed  Google Scholar 

  150. Baylis D, Bartlett DB, Patel HP, Roberts HC. Understanding how we age: insights into inflammaging. Longevity Healthspan 2013; 2(1):8.

    Article  PubMed  PubMed Central  Google Scholar 

  151. Bartlett BD, Huffman MK. Lifestyle interventions to improve. Switzerland: Springer International Publishing.

  152. Gleeson M, Bishop NC, Stensel DJ, et al. The antiinflammatory effects of exercise: mechanisms and implications for the prevention and treatment of disease. Nat Rev Immunol 2011; 11: 607–15.

    Article  CAS  PubMed  Google Scholar 

  153. Bartlett D, Fox O, McNulty CL, et al. Habitual physical activity is associated with the maintenance of neutrophil migratory dynamics in healthy older adults.. Brain Behav Immun 2016; 56: 12–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Zheng Q, Cui G, Chen J, et al. Regular exercise enhances the immune response against microbial antigens through upregulation of toll-like receptor signaling pathways. Cell Physiol Biochem 2015; 37(2):735–46.

    Article  CAS  PubMed  Google Scholar 

  155. Takahashi M, Miyashita M, Kawanishi N, et al. Low-volume exercise training attenuates oxidative stress and neutrophils activation in older adults. Eur J Appl Physiol 2013; 113(5):1117–26.

    Article  CAS  PubMed  Google Scholar 

  156. Turner JE, Brum PC. Does regular exercise counter T cell immunosenescence reducing the risk of developing cancer and promoting successful treatment of malignancies? Oxid Med Cell Longev 2017; 2017: 4234765.

    PubMed  PubMed Central  Google Scholar 

  157. van der Geest KSM, Wang Q, Eijsvogels TMH, et al. Changes in peripheral immune cell numbers and functions in octogenarian walkers–an acute exercise study. Immun Ageing 2017; 14: 5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  158. Duggal NA. Reversing the immune ageing clock: lifestyle modifications and pharmacological interventions. Biogerontology 2018; 19(6):481–96.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Maggini S, Wintergerst ES, Beveridge S, Hornig DH. Selected vitamins and trace elements support immune function by strengthening epithelial barriers and cellular and humoral immune responses. Br J Nutr 2007; 98(Suppl 1):S29.

    Article  CAS  Google Scholar 

  160. Zhang LJ, Chen SX, Guerrero-Juarez CF, et al. Age-related loss of innate immune antimicrobial function of dermal fat is mediated by transforming growth factor beta. Immunity 2019; 50(1):121–136.e5.

    Article  CAS  PubMed  Google Scholar 

  161. Shao Y, He T, Fisher GJ, Voorhees JJ, Quan T. Molecular basis of retinol anti-ageing properties in naturally aged human skin in vivo. Int J Cosmet Sci 2017; 39(1):56–65.

    Article  CAS  PubMed  Google Scholar 

  162. Raverdeau M, Mills KH. Modulation of T cell and innate immune responses by retinoic acid. J Immunol 2014; 192(7):2953–8.

    Article  CAS  PubMed  Google Scholar 

  163. Erdman J, MacDonald I, Zeisel S. Present knowledge in nutrition, 10th ed, Wiley- Blackwell, 2018.

    Google Scholar 

  164. Porter K, Hoey L, Hughes CF, Ward M, McNulty H. Causes, consequences and public health implications of low B-vitamin status in ageing. Nutrients 2016; 8(11):725.

    Article  PubMed Central  CAS  Google Scholar 

  165. Laird EJ, O’Halloran AM, Carey D, O’Connor D, Kenny RA, Molloy AM. Voluntary fortification is ineffective to maintain the vitamin B12 and folate status of older Irish adults: evidence from the Irish Longitudinal Study on Ageing (TILDA). Br J Nutr 2018; 120(1):111–20.

    Article  CAS  PubMed  Google Scholar 

  166. Green R. Vitamin B12 deficiency from the perspective of a practicing hematologist. Blood 2017; 129: 2603–11.

    Article  CAS  PubMed  Google Scholar 

  167. Michels AJ, Leonard SW, Uesugi SL, Bobe G, Frei B, Traber MG. Daily consumption of oregon hazelnuts affects atocopherol status in healthy older adults: a pre-post intervention study. J Nutr 2018; 148(12):1924.

    Article  PubMed  Google Scholar 

  168. Moriguchi S, Muraga M. Vitamin E and immunity. Vitam Horm 2000; 59: 305–36.

    Article  CAS  PubMed  Google Scholar 

  169. Wu D, Meydani SN. Age-associated changes in immune function: impact of vitamin E intervention and the underlying mechanisms. Endocr Metab Immune Disord Drug Targets 2014; 14(4):283–9.

    Article  CAS  PubMed  Google Scholar 

  170. Adolfsson O, Huber BT, Meydani SN. Vitamin E-enhanced IL-2 production in old mice: naive but not memory T cells show increased cell division cycling and IL-2-producing capacity. J Immunol 2001; 167: 3809–17.

    Article  CAS  PubMed  Google Scholar 

  171. Crétel E, Veen I, Pierres A, Bongrand P, Gavazzi G. Immunosénescence et infections, mythe ou réalité? Med Mal Infect 2010; 40(6):307–18.

    Article  PubMed  Google Scholar 

  172. Mizwicki MT, Menegaz D, Zhang J, et al. Genomic and nongenomic signaling induced by 1α,25(OH)2-vitamin D3 promotes the recovery of amyloid-ß phagocytosis by Alzheimer’s disease macrophages. J Alzheimers Dis 2012; 29(1):51–62.

    Article  CAS  PubMed  Google Scholar 

  173. Schmitt EB, Nahas-Neto J, Bueloni-Dias F, Poloni PF, Orsatti CL, Nahas EAP. Vitamin D deficiency is associated with 14 Hiba Sibaii, et al._metabolic syndrome in postmenopausal women. Maturitas 2018; 107: 97.

    Article  CAS  PubMed  Google Scholar 

  174. De Carvalho Goncalves CMR, Ribeiro SML. Aging, low grade systemic inflammation and vitamin D: a mini review. European journal of clinical nutrition 2017; 71: 434–40.

    Article  CAS  Google Scholar 

  175. Uwitonze AM, Razzaque MS. Role of magnesium in vitaminD activation and function. J Am Osteopath Assoc 2018; 118(3):181.

    Article  PubMed  Google Scholar 

  176. Vanherwegen AS, Gysemans C, Mathieu C. Regulation of immune function by vitamin D and its use in diseases of immunity. Endocrinol Metab Clin 2017; 46: 1061–94.

    Article  Google Scholar 

  177. Hemila H, Chalker E. Vitamin C for preventing and treating the common cold. Cochrane Database Syst Rev 2013; 1:CD000980.

  178. Sorice A, Guerriero E, Capone F, Colonna G, Castello G, Costantini S. Ascorbic acid: its role in immune system and chronic inflammation diseases. Mini Rev Med Chem 2014; 14(5):444–52.

    Article  CAS  PubMed  Google Scholar 

  179. Prasad AS. Zinc: role in immunity, oxidative stress and chronic inflammation. Curr Opin Clin Nutr Metab Care 2009; 12:646–52.

    Article  CAS  PubMed  Google Scholar 

  180. Prasad AS, Beck FW, Bao B, et al. Zinc supplementation decreases incidence of infections in the elderly: effect of zinc on generation of cytokines and oxidative stress. Am J Clin Nutr 2007; 85(3):837–44.

    Article  CAS  PubMed  Google Scholar 

  181. Bao B, Prasad AS, Beck FW, et al. Zinc decreases C-reactive protein, lipid peroxidation, and inflammatory cytokines in elderly subjects: a potential implication of zinc as an athero -protective agent. Am J Clin Nutr 2010; 91(6):1634–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Meydani SN, Barnett JB, Dallal GE, et al. Serum zinc and pneumonia in nursing home elderly. Am J Clin Nutr 2007; 86(4):1167–73.

    Article  CAS  PubMed  Google Scholar 

  183. Mocchegiani E, Muzzioli M, Giacconi R, et al. Metallothioneins/PARP-1/IL-6 interplay on natural killer cell activity in elderly: parallelism with nonagenarians and old infected humans. Effect of zinc supply. Mech Ageing Dev 2003; 124:459–68.

    Article  CAS  PubMed  Google Scholar 

  184. Uciechowski P, Kahmann L, Plümäkers B, et al. TH1 and TH2 cell polarization increases with aging and is modulated by zinc supplementation. Exp Gerontol 2008; 43: 493–8.

    Article  CAS  PubMed  Google Scholar 

  185. Boukai¨ba N, Flament C, Acher S, et al. A physiological amount of zinc supplementation: effects on nutritional, lipid, and thymic status in an elderly population. Am J Clin Nutr 1993; 57: 566–72.

    Article  Google Scholar 

  186. Duchateau J, Delepesse G, Vrijens R, Collet H. Beneficial effects of oral zinc supplementation on the immune response of old people. Am J Med 1981; 70: 1001–4.

    Article  CAS  PubMed  Google Scholar 

  187. Mocchegiani E, Costarelli L, Giacconi R, Piacenza F, Basso A, Malavolta M. Micronutrient (Zn, Cu, Fe)–gene interactions in ageing and inflammatory age-related diseases:implications for treatments. Ageing ResRev 2012; 11(2):297–319.

    Article  CAS  Google Scholar 

  188. Dao MC, Meydani SN. Iron biology, immunology, aging and obesity: four fields connected by the small peptide hormone hepcidin. Adv Nutr 2013; 4(6):602–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Fairweather-Tait SJ, Wawer AA, Gillings R, Jennings A, Myint PK. Iron status in the elderly. Mech Ageing Dev 2014; 136–137: 22-8.

    Google Scholar 

  190. Strindhall J, Ernerudh J, Mörner A, et al. Humoral response to influenza vaccination in relation to pre-vaccination antibody titres, vaccination history, cytomegalovirus serostatus and CD4/CD8 ratio. Infect Dis 2016; 48(6):436–42.

    Article  CAS  Google Scholar 

  191. Murasko DM, Bernstein ED, Gardner EM, et al. Role of humoral and cell-mediated immunity in protection from influenza disease after immunization of healthy elderly. Exp Gerontol 2002; 37: 427–39.

    Article  CAS  PubMed  Google Scholar 

  192. Siegrist CA, Aspinall R. B-cell responses to vaccination at the extremes of age. Nat Rev Immunol 2009; 9(3):185.

    Article  CAS  PubMed  Google Scholar 

  193. Ciabattini A, Nardini C, Santoro F, Garagnani P, Franceschig C, Medaglini D. Vaccination in the elderly: the challenge of immune changes with aging. Semin Immunol 2018; 40:83–94.

    Article  PubMed  Google Scholar 

  194. Osterholm MT, Kelley NS, Sommer A, Belongia EA. Efficacy and effectiveness of influenza vaccines: a systematic review and meta-analysis. Lancet Infect Dis 2012; 12(1):1236–44.

    Article  Google Scholar 

  195. Van Deursen JM. The role of senescent cells in ageing. Nature 2014; 509(7501):439–46.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  196. Maruyama T, Taguchi O, Niederman MS, et al. Efficacy of 23-valent pneumococcal vaccine in preventing pneumonia and improving survival in nursing home residents: double blind, randomised and placebo controlled trial. BMJ 2010; 340:c1004.

  197. Vila-Corcoles A, Salsench E, Rodriguez-Blanco T, et al. Clinical effectiveness of 23-valent pneumococcal polysaccharide vaccine against pneumonia in middle-aged and older adults: a matched case-control study. Vaccine 2009; 27:1504–10.

    Article  CAS  PubMed  Google Scholar 

  198. Izurieta HS, Wernecke M, Kelman J, et al. Effectiveness and duration of protection provided by the live-attenuated herpes zoster vaccine in the medicare population ages 65 years and older. Clin Infect Dis 2017; 64: 785–93.

    Article  PubMed  Google Scholar 

  199. Levin MJ, Kroehl ME, Johnson MJ, et al. Th1 memory differentiates recombinant from live herpes zoster vaccines. J Clin Invest 2018; 128(10):4429–40.

    Article  PubMed  PubMed Central  Google Scholar 

  200. Levin MJ, Oxman MN, Zhang JH, et al. Varicella-zoster virusspecific immune responses in elderly recipients of a herpes zoster vaccine. J Infect Dis 2008; 197: 825–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lal H, Cunningham AL, Godeaux O, et al. Efficacy of an adjuvanted herpes zoster subunit vaccine in older adults. N Engl J Med 2015; 372: 2087–96.

    Article  PubMed  Google Scholar 

  202. Coccia M, Collignon C, Hervé C, et al. Cellular and molecular synergy in AS01-adjuvanted vaccines results in an early IFNg response promoting vaccine immunogenicity. NPJ Vaccin 2017; 2: 25.

    Article  CAS  Google Scholar 

  203. Didierlaurent AM, Laupe`ze B, Di Pasquale A, et al. Adjuvant system AS01: helping to overcome the challenges of modern vaccines. Expert Rev Vaccines 2017; 16: 55–63.

    Article  CAS  PubMed  Google Scholar 

  204. Weinberger B, Grubeck-Loebenstein B. Vaccination in the Elderly. In: Thiel A, ed. Immunosenescence. Basel: Springer Basel.

  205. Cunningham AL, Lal H, Kovac M, et al. Efficacy of the Herpes Zoster subunit vaccine in adults 70 years of age or older. NEngl J Med 2016; 375: 1019–32.

    Article  CAS  Google Scholar 

  206. Silva SL, Albuquerque AS, Matoso P, et al. IL-7-induced proliferation of human naive CD4 T-cells relies on continued thymic activity. Front Immun 2017; 8: 20.

    Google Scholar 

  207. Pellegrini M, Calzascia T, Toe JG, et al. IL-7 engages multiple mechanisms to overcome chronic viral infection and limit organ pathology. Cell 2011; 144: 601–13.

    Article  CAS  PubMed  Google Scholar 

  208. Lang PO, Govind S, Aspinall R. Reversing T cell immunosenescence:why, who, and how. Age 2013; 35(3):609–20.

    Article  PubMed  Google Scholar 

  209. Ma LJ, Acero LF, Zal T, Schluns KS. Trans-presentation of IL-15 by intestinal epithelial cells drives development of CD8aa IELs. J Immunol 2009; 183(2):1044–54.

    Article  CAS  PubMed  Google Scholar 

  210. Chiu BC, Martin BE, StolbergVR, Chensue SW. The host environment is responsible for aging related functional NK cell deficiency. J Immunol 2013; 191(9):4688–98.

    Article  CAS  PubMed  Google Scholar 

  211. Gangemi S, Basile G, Monti D, et al. Age-related modifications in circulating IL-15 levels in humans. Mediators Inflamm 2005; 4: 245–7.

    Article  Google Scholar 

  212. Flores I, Cayuela ML, Blasco MA. Effects of telomerase and telomere length on epidermal stem cell behavior. Science 2005; 309(5738):1253–6.

    Article  CAS  PubMed  Google Scholar 

  213. Mitchell WA, Pink RC, Lapenna A, Aspinall R. Immunosenescence and the 3Rs: Restoration, Replacement and Reprogramming. In: Thiel A, ed. Immunosenescence. Basel: Springer Basel.

  214. Berent-Maoz B, Montecino-Rodriguez E, Signer RAJ, Kenneth Dorshkind K. Fibroblast growth factor-7 partially reverses murine thymocyte progenitor aging by repression of Ink4a. Blood 2012; 119(24):5715–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Buford TW, Willoughby DS. Impact of DHEA(S) and cortisol on immune function in aging: a brief review. Appl Physiol Nutr Metab 2008; 33(3):429–33.

    Article  CAS  PubMed  Google Scholar 

  216. Kroll J. Dehydroepiandrosterone, molecular chaperones and the epigenetics of primate longevity. Rejuvenation Res 2015; 18(4):341–6.

    Article  CAS  PubMed  Google Scholar 

  217. Prall SP, Muehlenbein MP. Dehydroepiandrosterone and multiple measures of functional immunity in young adults. Am J Hum Biol 2015; 27(6):877–80.

    Article  PubMed  Google Scholar 

  218. Khorram O, Vu L, Yen SS. Activation of immune function by dehydroepiandrosterone (DHEA) in age-advanced men. J Gerontol A Biol Sci Med Sci 1997; 52(1):M1–7.

    Article  Google Scholar 

  219. Rondanelli M, Giacosa A, Faliva MA, Perna S, Allieri F, Castellazzi AM. Review on microbiota and effectiveness of probiotics use in older. World J Clin Cases 2015; 3(2):156–62.

    Article  PubMed  PubMed Central  Google Scholar 

  220. Toward RE, Walton GE, Gibson GR. Immunosenescence and the gut microbiota: the role of probiotics and prebiotics. Nutr Aging 2012; 1l(3-4):167–80.

    Article  Google Scholar 

  221. Toward R, Montandon S, Walton G, Gibson GR. Effect of prebiotics on the human gut microbiota of elderly persons. Gut Microbes 2012; 3(1):57–60.

    Article  PubMed  Google Scholar 

  222. Fu YR, Yi ZJ, Pei JL, Guan S. Effects of Bifidobacterium bifidum on adaptive immune senescence in aging mice. Microbiol Immunol 2010; 54: 578–83.

    CAS  PubMed  Google Scholar 

  223. Meydani SN, Ha WK. Immunologic effects of yogurt. Am J Clin Nutr 2000; 71(4):861–72.

    Article  CAS  PubMed  Google Scholar 

  224. Nagai T, Makino S, Ikegami S, Itoh H, Yamada H. Effects of oral administration of yogurt fermented with Lactobacillus delbrueckii ssp._bulgaricus OLL1073R-1 and its exopolysaccharides against influenza virus infection in mice. Int Immunopharmacol 2011; 11: 2246–50.

    Article  CAS  PubMed  Google Scholar 

  225. Makino S, Ikegami S, Kano H, et al. Immunomodulatory effects of polysaccharides produced by Lactobacillus delbrueckii ssp.bulgaricus OLL1073R-1. J Dairy Sci 2006; 8(92):873–81.

    Google Scholar 

  226. Dalonso N, Goldman GH, Gern RM. Beta-glucans: medicinal activities, characterization, biosynthesis and new horizons. Appl Microbiol Biotechnol 2015; 99(19):7893–906.

    Article  CAS  PubMed  Google Scholar 

  227. Karumuthil-Melethil S, Gudi R, Johnson BM, Perez N, Vasu C. Fungal beta-glucan, a Dectin-1 ligand, promotes protection from type 1 diabetes by inducing regulatory innate immune response. Journal Immunol 2014; 193(7):3308–21.

    Article  CAS  Google Scholar 

  228. Jin X, Ruiz Beguerie J, Sze D M, Chan G C. Ganoderma lucidum (Reishi mushroom) for cancer treatment. Cochrane Database Syst Rev 2012; 6: CD007731.

  229. Lee SS, Wei YH, Chen CF, Wang SY, Chen KY. Antitumor effects of Ganoderma lucidum. J Chin Med 1995; 6: 1–12.

    Google Scholar 

  230. Ji Z, Tang Q, Zhang J, Yang Y, Jia W, Pan Y. Immunomodulation of RAW264.7 macrophages by GLIS, a proteopolysaccharide from Ganoderma lucidum. J Ethnopharmacol 2007; 112: 445–50.

    Article  CAS  PubMed  Google Scholar 

  231. Mao T, Van De Water J, Keen CL, Stern JS, Hackman R, Gershwin ME. Two mushrooms, Grifola frondosa and Ganoderma lucidum, can stimulate cytokine gene expression and proliferation in human T lymphocytes. Int J Med Mushrooms 2007; 142: 13–22.

    Google Scholar 

  232. Sun LX, Lin ZB, Li XJ, et al. Promoting effects of Ganoderma lucidum polysaccharides on B16F10 cells to activate lymphocytes. Basic Clin Pharmacol Toxicol 2011; 108: 149–54.

    Article  CAS  PubMed  Google Scholar 

  233. Bao XF, Wang XS, Dong Q, Fang JN, Li XY. Structural features of immunologically active polysaccharides from Ganoderma lucidum. Phytochem 2002; 59: 175–81.

    Article  CAS  Google Scholar 

  234. Zhang K, Ma X, He W, et al. Extracts of Cistanche deserticola can antagonize immunosenescence and extend life span in senescence-accelerated mouse prone 8 (SAM-P8) Mice. Evidence-based complementary and alternative medicine. eCAM 2014; 601383.

    Google Scholar 

  235. Yonei Y, Kitano T, Ogura M, et al. Effects of health food containing Cistanche deserticola extract on qol and safety in elderly: an open pilot study of 12-week oral treatment. Anti Aging Med 2011; 8(2):7–14.

    Article  Google Scholar 

  236. Zhang L, Shao WF, Yuan LF, Tu PF, Ma ZZ. Decreasing proinflammatory cytokine and reversing the immunosenescence with extracts of Pu-erh tea in senescence accelerated mouse(SAM). Food chemistry 2012; 135(4):2222–8.

    Article  CAS  PubMed  Google Scholar 

  237. Chu SL, Fu H, Yang JX, et al. A randomized double-blind placebo-controlled study of Pu’er tea extract on the regulation of metabolic syndrome. Chin J Integr Med 2011; 17(7):492–8.

    Article  PubMed  Google Scholar 

  238. Ebrahimi M, Mohammad Hassan Z, Mostafaie A, Zare Mehrjardi N, Ghazanfari T. Purified protein fraction of garlic extract modulates cellular immune response against breast transplanted tumors in BALB/c mice model. Cell J Spring 2013; 15(1):65–75.

    Google Scholar 

  239. Ried K. Garlic Lowers blood pressure in hypertensive individuals, regulates serum cholesterol, and stimulates immunity: an updated meta-analysis and review. J Nutr 2016; 146(2):389s-96s.

    Google Scholar 

  240. Percival SS. Aged garlic extract modifies human immunity. J Nutr 2016; 146(2):433s-6s.

    Google Scholar 

  241. Zhu Y, Tchkonia T, Pirtskhalava T, et al. The Achilles’ heel of senescent cells: from transcription to senolytic drugs. Aging Cell 2015; 14: 644–58.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Cámara M, Maríade, Sánchez-Mata C, et al. Lycopene: a review of chemical and biological activity related to beneficial health effects studies in natural products. Chemistry 2013; 11:383–426.

    Google Scholar 

  243. Riso P, Visioli F, Grande S, et al. Effect of a tomato-based drink on markers of inflammation, immunomodulation, and oxidative stress. J Agric Food Chem 2006; 54(7):2563–6.

    Article  CAS  PubMed  Google Scholar 

  244. Briviba K, Kulling SE, Möseneder J, Watzl B, Rechkemmer G, Bub A. Effects of supplementing a low-carotenoid diet with a tomato extract for 2 weeks on endogenous levels of DNA single strand breaks and immune functions in healthy non-smokers and smokers. Carcinogenesis 2004; 25(12):2373–8.

    Article  CAS  PubMed  Google Scholar 

  245. van Breda SG, Wilms LC, Gaj S, et al. The exposome concept in a human nutrigenomics study: evaluating the impact of exposure to a complex mixture of phytochemicals using transcriptomics signatures. Mutagenesis 2015; 30(6):723–31.

    Article  PubMed  CAS  Google Scholar 

  246. Pan P, Huang YW, Oshima K, et al. An immunological perspective for preventing cancer with berries. J Berry Res 2018; 8(3):163–75.

    Article  PubMed  PubMed Central  Google Scholar 

  247. Deng Y, Wang F, Hughes T, Yu J. FOXOs in cancer immunity:knowns and unknowns. Semin Cancer Biol 2018; 50: 53–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  248. Carr AC, Maggini S. Vitamin C and immune function. Nutrients 2017; 9(11):E1211.

    Google Scholar 

  249. Daniel M, Tollefsbol TO. Epigenetic linkage of aging, cancer and nutrition. J Exp Biol 2015; 218(1):59–70.

    Article  PubMed  PubMed Central  Google Scholar 

  250. Wang J, Fang X, Ge L, et al. Antitumor, antioxidant and antiinflammatory activities of kaempferol and its corresponding glycosides and the enzymatic preparation of kaempferol. PLoS One 2018; 13(5):e0197563.

    Google Scholar 

  251. Das SK, Roberts SB, Bhapkar MV, et al. Body-composition changes in the comprehensive assessment of long-term effects of reducing intake of energy (CALERIE)-2 study: a 2-year randomized controlled trial of calorie restriction in nonobese humans. Am J Clin Nutr 2017; 105: 913–27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  252. Ravussin E, Redman LM, Rochon J, et al. A 2-year randomized controlled trial of human caloric restriction:feasibility and effects on predictors of health span and longevity. J Gerontol A Biol Sci Med Sci 2015; 70:1097–104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  253. Ostan R, Béné MC, Spazzafumo L, et al. Impact of diet and nutraceutical supplementation on inflammation in elderly people. Results from the RISTOMED study, an open-label randomized control trial. Clin Nutr 2016; 5:812–8.

    Article  Google Scholar 

  254. Moro-García MA, Alonso-Arias R, Baltadjieva M, et al. Oral supplementation with Lactobacillus delbrueckii subsp. bulgaricus 8481 enhances systemic immunity in elderly subjects. Age 2013; 35: 1311–26.

    Article  PubMed  CAS  Google Scholar 

  255. Guillemard E, Tondu F, Lacoin F, Schrezenmeir J. Consumption of a fermented dairy product containing the probiotic Lactobacillus casei DN-114001 reduces the duration of respiratory infections in the elderly in a randomised controlled trial. Br J Nutr 2010; 103: 58–68.

    Article  CAS  PubMed  Google Scholar 

  256. Shelbaya S, Seddik S, Ahmed A, Roshdy N, Abbas M. Assessment of vitamin D status in different samples of an elderly Egyptian population. Egypt J Obes Diabetes Endocrinol 2017; 3: 53–8.

    Article  Google Scholar 

  257. El-Sabbagh NM, Shahin EM, Abo El Makarem NH, et al. Study of the C-reactive protein and tumor necrosis factor alpha levels in the elderly before and after resistance exercise training.. Egypt J Obes Diabet Endocr 2015; 1: 7–13.

    Article  Google Scholar 

  258. Kohut ML, Lee W, Martin A, et al. The exercise-induced enhancement of influenza immunity is mediated in part by improvements in psychosocial factors in older adults. Brain Behav Immun 2005; 19: 357–66.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hiba Sibaii.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sibaii, H., El-Zayat, S.R. & Khalil, M. When wrinkles appear on the immune system can it be reversed?. Eur Cytokine Netw 31, 1–17 (2020). https://doi.org/10.1684/ecn.2020.0441

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ecn.2020.0441

Key words

Navigation