Skip to main content
Log in

Buprenorphine differentially affects M1- and M2-polarized macrophages from human umbilical cord blood

  • Research Article
  • Published:
European Cytokine Network

Abstract

Background

As a partial μ-opioid receptor agonist with long half-life time, buprenorphine has been widely used to relieve chronic cancer and nonmalignant pain. The maintenance of chronic pain involves inflammation; however whether buprenorphine has anti-inflammation property remains unclear.

Methods

Macrophages, the immune cells that initiate and maintain inflammation, were isolated from human umbilical cord blood, and were polarized into M1 or M2 macrophages with IFN-γ in the presence of lipopolysaccharide (LPS) or IL-4, respectively. Quantitative PCR, ELISA,Western blotting analysis, and chromatin immunoprecipitation assays were employed to characterize M1 and M2 macrophages.

Results

1) Buprenorphine did not change not only the apoptosis, survival, andmorphology of resting macrophages, but also the antigen-presenting function of macrophages. 2) Buprenorphine inhibited the levels of mRNA and protein of several cytokines in M1 macrophages, and enhanced the expression of Ym1 and Fizz1 in M2 macrophages. 3) Buprenorphine did not affect the modulation of NF-κB and MAPK cascades by LPS in M1 macrophages. 4) Buprenorphine inhibited the expression of IRF5 and reduced binding of DNA to IRF5.

Conclusion

Buprenorphine may downregulate IRF5 pathway and limit M1 macrophage phenotype. These effects may contribute to its therapeutic benefit for chronic neuropathic pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Fine PG, Miaskowski C, Paice JA. Meeting the challenges in cancer pain management. J Support Oncol 2004; 2: 5–22, quiz3-4.

    PubMed  Google Scholar 

  2. Kress HG. Clinical update on the pharmacology, efficacy and safety of transdermal buprenorphine. Eur J Pain 2009; 13: 219–30.

    Article  CAS  PubMed  Google Scholar 

  3. Breivik H, Collett B, Ventafridda V, Cohen R, Gallacher D. Survey of chronic pain in Europe: prevalence, impact on daily life, and treatment. Eur J Pain 2006; 10: 287–333.

    Article  PubMed  Google Scholar 

  4. Portenoy RK, Farrar JT, Backonja MM, et al. Long-term use of controlled-release oxycodone for noncancer pain: results of a 3-year registry study. Clin J Pain 2007; 23: 287–99.

    Article  PubMed  Google Scholar 

  5. Sites BD, Beach ML, Davis MA. Increases in the use of prescription opioid analgesics and the lack of improvement in disability metrics among users. Reg Anesth Pain Med 2014; 39: 6–12.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Babalonis S, Lofwall MR, Nuzzo PA, Siegel AJ, Walsh SL. Abuse liability and reinforcing efficacy of oral tramadol in humans. Drug Alcohol Depend 2013; 129: 116–24.

    Article  CAS  PubMed  Google Scholar 

  7. Du Pen A, Shen D, Ersek M. Mechanisms of opioid-induced tolerance and hyperalgesia. Pain Manag Nurs 2007; 8: 113–21.

    Article  Google Scholar 

  8. Lutfy K, Cowan A. Buprenorphine: a unique drug with complex pharmacology. Curr Neuropharmacol 2004; 2: 395–402.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Alford DP, Compton P, Samet JH. Acute pain management for patients receiving maintenance methadone or buprenorphine therapy. Ann Intern Med 2006; 144: 127–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Khroyan TV, Wu J, Polgar WE, et al. BU08073 a buprenorphine analogue with partial agonist activity at mu-receptors in vitro but long-lasting opioid antagonist activity in vivo in mice. Br J Pharmacol 2015; 172: 668–80.

    Article  CAS  PubMed  Google Scholar 

  11. Schmidt-Hansen M, Taubert M, Bromham N, Hilgart JS, Arnold S. The effectiveness of buprenorphine for treating cancer pain: an abridged Cochrane review. BMJ Support Palliat Care 2016; 6: 292–306.

    Article  PubMed  Google Scholar 

  12. Davis MP. Twelve reasons for considering buprenorphine as a frontline analgesic in the management of pain. J Support Oncol 2012; 10: 209–19.

    Article  CAS  PubMed  Google Scholar 

  13. Gosselin RD, Suter MR, Ji RR, Decosterd I. Glial cells and chronic pain. Neuroscientist 2010; 16: 519–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Bidlack JM, Khimich M, Parkhill AL, Sumagin S, Sun B, Tipton CM. Opioid receptors and signalling on cells from the immune system. J Neuroimmune Pharmacol 2006; 1: 260–9.

    Article  PubMed  Google Scholar 

  15. Vallejo R, de Leon-Casasola O, Benyamin R. Opioid therapy and immunosuppression: a review. Am J Ther 2004; 11: 354–65.

    Article  PubMed  Google Scholar 

  16. Molina PE. Opioids and opiates: analgesia with cardiovascular, haemodynamic and immune implications in critical illness. J Intern Med 2006; 259: 138–54.

    Article  CAS  PubMed  Google Scholar 

  17. Sacerdote P. Opioids and the immune system. Palliat Med 2006; 20: s9–15.

    PubMed  Google Scholar 

  18. Martucci C, Panerai AE, Sacerdote P. Chronic fentanyl or buprenorphine infusion in the mouse: similar analgesic profile but different effects on immune responses. Pain 2004; 110: 385–92.

    Article  CAS  PubMed  Google Scholar 

  19. Hugunin KM, Fry C, Shuster K, Nemzek JA. Effects of tramadol and buprenorphine on select immunologic factors in a cecal ligation and puncture model. Shock 2010; 34: 250–60.

    Article  CAS  PubMed  Google Scholar 

  20. Natale VA, McCullough KC. Macrophage culture: influence of species-specific incubation temperature. J Immunol Methods 1998; 214: 165–74.

    Article  CAS  PubMed  Google Scholar 

  21. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitativePCRand the 2(-Delta Delta C(T) method. Methods 2001; 25: 402–8.

    Article  CAS  PubMed  Google Scholar 

  22. Nemzek JA, Siddiqui J, Remick DG. Development and optimization of cytokine ELISAs using commercial antibody pairs. J Immunol Methods 2001; 255: 149–57.

    Article  CAS  PubMed  Google Scholar 

  23. Liu YC, Zou XB, Chai YF, Yao YM. Macrophage polarization in inflammatory diseases. Int J Biol Sci 2014; 10: 520–9.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Wang N, Liang H, Zen K. Molecular mechanisms that influence the macrophage m1-m2 polarization balance. Front Immunol 2014; 5:614.

    PubMed  PubMed Central  Google Scholar 

  25. Verreck FA, de Boer T, Langenberg DM, et al. Human IL-23-producing type 1 macrophages promote but IL-10-producing type 2 macrophages subvert immunity to (myco)bacteria. Proc Natl Acad Sci U S A 2004; 101: 4560–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Nathan CF, Murray HW, Wiebe ME, Rubin BY. Identification of interferon-gamma as the lymphokine that activates human macrophage oxidative metabolism and antimicrobial activity. J Exp Med 1983; 158: 670–89.

    Article  CAS  PubMed  Google Scholar 

  27. Martinez FO, Helming L, Gordon S. Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 2009; 27: 451–83.

    Article  CAS  PubMed  Google Scholar 

  28. Sica A, Mantovani A. Macrophage plasticity and polarization: in vivo veritas. J Clin Invest 2012; 122: 787–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Raes G, Van den Bergh R, De Baetselier P, et al. Arginase-1 and Ym1 are markers for murine, but not human, alternatively activated myeloid cells. J Immunol 2005; 174: 6561, author reply-2.

    Article  CAS  PubMed  Google Scholar 

  30. Krausgruber T, Blazek K, Smallie T, et al. IRF5 promotes inflammatory macrophage polarization and TH1-TH17 responses. Nat Immunol 2011; 12: 231–8.

    Article  CAS  PubMed  Google Scholar 

  31. An H, Xu H, Yu Y, et al. Up-regulation of TLR9 gene expression by LPS in mouse macrophages via activation of NF-kappaB, ERK and p38 MAPK signal pathways. Immunol Lett 2002; 81: 165–9.

    Article  CAS  PubMed  Google Scholar 

  32. Karin M. HowNF-kappaB is activated: the role of the IkappaB kinase (IKK) complex. Oncogene 1999; 18: 6867–74.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Guo.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, J., Guo, W. & Du, X. Buprenorphine differentially affects M1- and M2-polarized macrophages from human umbilical cord blood. Eur Cytokine Netw 28, 85–92 (2017). https://doi.org/10.1684/ecn.2017.0392

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1684/ecn.2017.0392

Key words

Navigation