Whole-body cryostimulation as an effective way of reducing exercise-induced inflammation and blood cholesterol in young men


Inflammation may accompany obesity and a variety of diseases, or result from excessive exercise. The aim of this study was to investigate the anti-inflammatory effect of whole-body cryostimulation on the inflammatory response induced by eccentric exercise under laboratory conditions. The study also sought to establish if cold treatment changes the lipid profile and modifies energy expenditure in young people. Eighteen healthy and physically active, college-aged men volunteered to participate in the experiment. They were divided into two subgroups: CRYsubmitted to whole-body cryostimulation, and CONT- a control group. Both groups performed eccentric work to induce muscle damage. Blood samples were collected before and 24 h after the exercise. Over the five days that followed, the CRY group was exposed to a series of 10 sessions in a cryogenic chamber (twice a day, for 3 min, at a temperature of −110°C). After this period of rest, both groups repeated a similar eccentric work session, following the same schedule of blood collection. The perceived pain was noted 24h after each session of eccentric workout. A 30-minute step up/down work-out induced delayed-onset muscle soreness in both groups. The five-day recovery period accompanied by exposure to cold significantly enhanced the concentration of the anti-inflammatory cytokine IL-10. It also led to a pronounced reduction in levels of the pro-inflammatory cytokine IL-1β, and reduced muscle damage. The values for IL-10 before the second bout of eccentric exercise in the CRY group were 2.0-fold higher in comparison to baseline, whereas in the CONT group, the concentration remained unchanged. Furthermore, blood concentrations of the pro-inflammatory cytokine IL-1β fell significantly in the CRY group. The main finding of this study was that a series of 10 sessions of whole body cryostimulation significantly reduced the inflammatory response induced by eccentric exercise. The lipid profile was also improved, but there was no effect on energy expenditure during the exercise.

This is a preview of subscription content, log in to check access.


  1. 1.

    Blair SN. Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med 2009; 43: 1–2.

    PubMed  Google Scholar 

  2. 2.

    Blair SN, Morris JN. Healthy hearts-and the universal benefits of being physically active: physical activity and health. Ann Epidemiol 2009; 19: 253–6.

    PubMed  Article  Google Scholar 

  3. 3.

    Lee IM, Shiroma EJ, Lobelo F, et al. Effect of physical inactivity on major non-communicable diseases worldwide: an analysis of burden of disease and life expectancy. Lancet 2012; 380: 219–29.

    PubMed Central  PubMed  Article  Google Scholar 

  4. 4.

    Pedersen BK. The anti-inflammatory effect of exercise: its role in diabetes and cardiovascular disease control. Essays Biochem 2006; 42: 105–17.

    CAS  PubMed  Article  Google Scholar 

  5. 5.

    Tidball JG. Inflammatory processes in muscle injury and repair. Am J Physiol Regul Integr Comp Physiol 2005; 288: R345–53.

    Article  Google Scholar 

  6. 6.

    Paulsen G, Mikkelsen UR, Raastad T, Peake JM. Leucocytes, cytokines and satellite cells: what role do they play in muscle damage and regeneration following eccentric exercise? Exerc Immunol Rev 2012; 18: 42–97.

    PubMed  Google Scholar 

  7. 7.

    Braun WA, Dutto DJ. The effects of a single bout of downhill running and ensuing delayed onset of muscle soreness on running economy performed 48 h later. Eur J Appl Physiol 2003; 90: 29–34.

    PubMed  Article  Google Scholar 

  8. 8.

    Clarkson PM, Hubal MJ. Exercise-induced muscle damage in humans. Am J Phys Med Rehabil 2002; 81: S52–69.

    Article  Google Scholar 

  9. 9.

    Aoi W, Naito Y, Yoshikawa T. Role of oxidative stress in impaired insulin signaling associated with exercise-induced muscle damage. Free Radic Biol Med 2013; 65: 1265–72.

    CAS  PubMed  Article  Google Scholar 

  10. 10.

    Costello JT, Algar LA, Donnelly AE. Effects of whole-body cryotherapy (-110 degrees C) on proprioception and indices of muscle damage. Scand J Med Sci Sports 2012; 22: 190–8.

    CAS  PubMed  Article  Google Scholar 

  11. 11.

    Hausswirth C, Louis J, Bieuzen F, et al. Effects of whole-body cryotherapy vs. far-infrared vs. passive modalities on recovery from exercise-induced muscle damage in highly-trained runners. PLoS One 2011; 6: e277–9.

    Article  Google Scholar 

  12. 12.

    Costello JT, Baker PRA, Minett GM, et al. Whole-body cryotherapy (extreme cold air exposure) for preventing and treating muscle soreness after exercise in adults (Protocol). Cochrane Database of Systematic Reviews 2013.

    Google Scholar 

  13. 13.

    Torres R, Ribeiro F, Alberto Duarte J, Cabri JM. Evidence of the physiotherapeutic interventions used currently after exercise-induced muscle damage: Systematic review and meta-analysis. Phys Ther Sport 2012; 13: 101–14.

    PubMed  Article  Google Scholar 

  14. 14.

    Barnett A. Using recovery modalities between training sessions in elite athletes: does it help? Sports Med 2006; 36: 781–96.

    PubMed  Article  Google Scholar 

  15. 15.

    Banfi G, Lombardi G, Colombini A, Melegati G. Whole-body cryotherapy in athletes. Sports Med 2010; 40: 509–17.

    PubMed  Article  Google Scholar 

  16. 16.

    Lubkowska A, Szygula Z, Chlubek D, Banfi G. The effect of prolonged whole-body cryostimulation treatment with different amounts of sessions on chosen pro- and anti-inflammatory cytokines levels in healthy men. Scand J Clin Lab Invest 2011; 71: 419–25.

    CAS  PubMed  Article  Google Scholar 

  17. 17.

    Ziemann E, Olek RA, Kujach S, et al. Five-day whole-body cryostimulation, blood inflammatory markers, and performance in high-ranking professional tennis players. J Athl Train 2012; 47: 664–72.

    PubMed Central  PubMed  Article  Google Scholar 

  18. 18.

    Di Renzo L, Carbonelli MG, Bianchi A, et al. Body composition changes after laparoscopic adjustable gastric banding: what is the role of-174G>C interleukin-6 promoter gene polymorphism in the therapeutic strategy? Int J Obes (Lond) 2012; 36: 369–78.

    Article  Google Scholar 

  19. 19.

    Costello JT, Culligan K, Selfe J, Donnelly AE. Muscle, skin and core temperature after-110 degrees c cold air and 8 degrees c water treatment. PLoS One 2012; 7: e48190.

    Article  Google Scholar 

  20. 20.

    Lubkowska A, Banfi G, Dolegowska B, et al. Changes in lipid profile in response to three different protocols of whole-body cryostimulation treatments. Cryobiology 2010; 61: 22–6.

    CAS  PubMed  Article  Google Scholar 

  21. 21.

    Ziemann E, Grzywacz T, Luszczyk M, et al. Aerobic and anaerobic changes with high-intensity interval training in active college-aged men. J Strength Cond Res 2011; 25: 1104–12.

    PubMed  Article  Google Scholar 

  22. 22.

    Newham DJ, Jones DA, Edwards RH. Large delayed plasma creatine kinase changes after stepping exercise. Muscle Nerve 1983; 6: 380–5.

    CAS  PubMed  Article  Google Scholar 

  23. 23.

    Szczesna-Kaczmarek A. Muscle fiber injury after eccentric exercise. Acta Biochimica Polonica 2007; 54: 1–5.

    Google Scholar 

  24. 24.

    Jeukendrup AE, Wallis GA. Measurement of substrate oxidation during exercise by means of gas exchange measurements. Int J Sports Med 2005; 26 Suppl 1: S28–37.

    Article  Google Scholar 

  25. 25.

    Flandry F, Hunt JP, Terry GC, Hughston JC. Analysis of subjective knee complaints using visual analog scales. Am J Sports Med 1991; 19: 112–8.

    CAS  PubMed  Article  Google Scholar 

  26. 26.

    Gulick DT, Kimura IF, Sitler M, Paolone A, Kelly JD. Various treatment techniques on signs and symptoms of delayed onset muscle soreness. J Athl Train 1996; 31: 145–52.

    CAS  PubMed Central  PubMed  Google Scholar 

  27. 27.

    Lubkowska A, Szygula Z, Klimek AJ, Torii M. Do sessions of cryostimulation have influence on white blood cell count, level of IL6 and total oxidative and antioxidative status in healthy men? Eur J Appl Physiol 2010; 109: 67–72.

    CAS  PubMed  Article  Google Scholar 

  28. 28.

    Garaulet M, Ordovas JM, Madrid JA. The chronobiology, etiology and pathophysiology of obesity. Int J Obes (Lond) 2010; 34: 1667–83.

    CAS  Article  Google Scholar 

  29. 29.

    Rao SR. Inflammatory markers and bariatric surgery: a metaanalysis. Inflamm Res 2012; 61: 789–807.

    CAS  PubMed  Article  Google Scholar 

  30. 30.

    Sood A. Obesity, adipokines, and lung disease. J Appl Physiol (1985) 2010; 108: 744–53.

    CAS  Article  Google Scholar 

  31. 31.

    Cooper DM, Radom-Aizik S, Schwindt C, Zaldivar Jr. F. Dangerous exercise: lessons learned from dysregulated inflammatory responses to physical activity. J Appl Physiol 2007; 103: 700–9.

    CAS  PubMed  Article  Google Scholar 

  32. 32.

    Smith LL. Cytokine hypothesis of overtraining: a physiological adaptation to excessive stress? Med Sci Sports Exerc 2000; 32: 317–31.

    CAS  PubMed  Article  Google Scholar 

  33. 33.

    Ziemann E, Zembron-Lacny A, Kasperska A, et al. Exercise traininginduced changes in inflammatory mediators and heat shock proteins in young tennis players. J Sports Sci Med 2013; 12: 282–9.

    PubMed Central  PubMed  Google Scholar 

  34. 34.

    Mucci P, Durand F, Lebel B, Bousquet J, Prefaut C. Interleukins 1- beta,-8, and histamine increases in highly trained, exercising athletes. Med Sci Sports Exerc 2000; 32: 1094–100.

    CAS  PubMed  Article  Google Scholar 

  35. 35.

    Nieman DC, Henson DA, Smith LL, et al. Cytokine changes after a marathon race. J Appl Physiol 2001; 91: 109–14.

    CAS  PubMed  Google Scholar 

  36. 36.

    Ostrowski K, Rohde T, Zacho M, Asp S, Pedersen BK. Evidence that interleukin-6 is produced in human skeletal muscle during prolonged running. J Physiol 1998; 508(Pt 3): 949–53.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  37. 37.

    Suzuki K, Nakaji S, Yamada M, et al. Systemic inflammatory response to exhaustive exercise. Cytokine kinetics. Exerc Immunol Rev 2002; 8: 6–48.

    PubMed  Google Scholar 

  38. 38.

    Malm C, Nyberg P, Engstrom M, et al. Immunological changes in human skeletal muscle and blood after eccentric exercise and multiple biopsies. J Physiol 2000; 529 Pt 1: 243–62.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  39. 39.

    Nosaka K, Sakamoto K, Newton M, Sacco P. How long does the protective effect on eccentric exercise-induced muscle damage last? Med Sci Sports Exerc 2001; 33: 1490–5.

    CAS  PubMed  Article  Google Scholar 

  40. 40.

    Banfi G., Barassi A. et al. Effects of whole-body cryotherapy on serum mediators of inflammation and serum muscle enzymes in athletes. J Therm Biol 2009; 34: 55–9.

    CAS  Article  Google Scholar 

  41. 41.

    Hirvonen HE, Mikkelsson MK, Kautiainen H, Pohjolainen TH, Leirisalo-Repo M. Effectiveness of different cryotherapies on pain and disease activity in active rheumatoid arthritis. A randomised single blinded controlled trial. Clin Exp Rheumatol 2006; 24: 295–301.

    CAS  PubMed  Google Scholar 

  42. 42.

    Wilcock IM, Cronin JB, Hing WA. Physiological response to water immersion: a method for sport recovery? Sports Med 2006; 36: 747–65.

    PubMed  Article  Google Scholar 

  43. 43.

    Moore KW, O’Garra A, de Waal Malefyt R, Vieira P, Mosmann TR. Interleukin-10. Annu Rev Immunol 1993; 11: 165–90.

    CAS  PubMed  Article  Google Scholar 

  44. 44.

    Pretolani M. Interleukin-10: an anti-inflammatory cytokine with therapeutic potential. Clin Exp Allergy 1999; 29: 1164–71.

    CAS  PubMed  Article  Google Scholar 

  45. 45.

    Miller E, Markiewicz L, Saluk J, Majsterek I. Effect of short-term cryostimulation on antioxidative status and its clinical applications in humans. Eur J Appl Physiol 2012; 112: 1645–52.

    CAS  PubMed Central  PubMed  Article  Google Scholar 

  46. 46.

    Lubkowska A, Dolegowska B, Szygula Z. Whole-body cryostimulation - potential beneficial treatment for improving antioxidant capacity in healthy men- significance of the number of sessions. PLoS One 2012; 7: e46352.

    Article  Google Scholar 

  47. 47.

    Lubkowska A, Dolegowska B, Szygula Z, Klimek A. Activity of selected enzymes in erythrocytes and level of plasma antioxidants in response to single whole-body cryostimulation in humans. Scand J Clin Lab Invest 2009; 69: 387–94.

    CAS  PubMed  Article  Google Scholar 

  48. 48.

    Chen JL, Wu Y. Cardiovascular risk factors in Chinese American children: associations between overweight, acculturation, and physical activity. J Pediatr Health Care 2008; 22: 103–10.

    PubMed Central  PubMed  Article  Google Scholar 

  49. 49.

    Drygas W, Kostka T, Jegier A, Kunski H. Long-term effects of different physical activity levels on coronary heart disease risk factors in middle-aged men. Int J Sports Med 2000; 21: 235–41.

    CAS  PubMed  Article  Google Scholar 

  50. 50.

    McMurray RG, Bangdiwala SI, Harrell JS, Amorim LD. Adolescents with metabolic syndrome have a history of low aerobic fitness and physical activity levels. Dyn Med 2008; 7: 5.

    PubMed Central  PubMed  Article  Google Scholar 

  51. 51.

    Fernandez ML, Webb D. The LDL to HDL cholesterol ratio as a valuable tool to evaluate coronary heart disease risk. J Am Coll Nutr 2008; 27: 1–5.

    CAS  PubMed  Article  Google Scholar 

  52. 52.

    Tangvarasittichai S, Poonsub P, Tangvarasittichai O. Association of serum lipoprotein ratios with insulin resistance in type 2 diabetes mellitus. Indian J Med Res 2010; 131: 641–8.

    CAS  PubMed  Google Scholar 

  53. 53.

    Xiang SK, Hua F, Tang Y, et al. Relationship between Serum Lipoprotein Ratios and Insulin Resistance in Polycystic Ovary Syndrome. Int J Endocrinol 2012; 2012: 173281.

    PubMed Central  PubMed  Article  Google Scholar 

  54. 54.

    Pedersen BK, Febbraio MA. Muscle as an endocrine organ: focus on muscle-derived interleukin-6. Physiol Rev 2008; 88: 1379–406.

    CAS  PubMed  Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Ewa Ziemann.

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ziemann, E., Olek, R.A., Grzywacz, T. et al. Whole-body cryostimulation as an effective way of reducing exercise-induced inflammation and blood cholesterol in young men. Eur Cytokine Netw 25, 14–23 (2014). https://doi.org/10.1684/ecn.2014.0349

Download citation

Key words

  • muscle damage
  • cytokines
  • cold air exposure