European Journal of Dermatology

, Volume 28, Issue 5, pp 597–605 | Cite as

The genetics of cutaneous squamous cell carcinogenesis

  • Manuel Antonio Campos
  • José Manuel Lopes
  • Paula Soares


In this review, the current knowledge of cutaneous squamous cell carcinogenesis (cSCC) is outlined based on an appraisal of the different features of cSCC, with particular emphasis on genetic alterations underlying aetiopathogenesis. When appropriate, diagnostic and/or prognostic biomarkers for cSCC are also considered. This review is intended to aid future investigation into the molecular characterization of cSCC.

Key words

carcinogenesis cutaneous squamous cell carcinoma cSCC genetics 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Jemal A, Siegel R, Xu J, Ward E. Cancer statistics, 2010. CA Cancer J Clin 2010; 60: 277–300.CrossRefPubMedGoogle Scholar
  2. 2.
    Carsin AE, Sharp L, Comber H. Geographical, urban/rural and socioeconomic variations in nonmelanoma skin cancer incidence: a population–based study in Ireland. Br J Dermatol 2011; 164: 822–9.CrossRefPubMedGoogle Scholar
  3. 3.
    Birch–Johansen F, Jensen A, Mortensen L, Olesen AB, Kjaer SK. Trends in the incidence of nonmelanoma skin cancer in Denmark 1978–2007: rapid incidence increase among young Danish women. Int J Cancer 2010; 127: 2190–8.CrossRefPubMedGoogle Scholar
  4. 4.
    Hussain SK, Sundquist J, Hemminki K. Incidence trends of squamous cell and rare skin cancers in the Swedish national cancer registry point to calendar year and age–dependent increases. J Invest Dermatol 2010; 130: 1323–8.CrossRefPubMedGoogle Scholar
  5. 5.
    Ullrich SE. Mechanisms underlying UV–induced immune suppression. Mutat Res 2005; 571: 185–205.CrossRefPubMedGoogle Scholar
  6. 6.
    Ragin CC, Modugno F, Gollin SM. The epidemiology and risk factors of head and neck cancer: a focus on human papillomavirus. J Dent Res 2007; 86: 104–14.CrossRefPubMedGoogle Scholar
  7. 7.
    Salasche SJ. Epidemiology of actinic keratoses and squamous cell carcinoma. J Am Acad Dermatol 2000; 42: 4–7.CrossRefPubMedGoogle Scholar
  8. 8.
    Glogau RG. The risk of progression to invasive disease. J Am Acad Dermatol 2000; 42: 23–4.CrossRefPubMedGoogle Scholar
  9. 9.
    Criscione VD, Weinstock MA, Naylor MF, et al. Actinic keratoses: natural history and risk of malignant transformation in the Veterans Affairs Topical Tretinoin Chemoprevention Trial. Cancer 2009; 115: 2523–30.CrossRefPubMedGoogle Scholar
  10. 10.
    Schmults CD, Karia PS, Carter JB, Han J, Qureshi AA. Factors predictive of recurrence and death from cutaneous squamous cell carcinoma: a 10–year, single–institution cohort study. JAMA Dermatol 2013; 149: 541–7.CrossRefPubMedGoogle Scholar
  11. 11.
    Schwartz RA. Keratoacanthoma: a clinico–pathologic enigma. Dermatol Surg 2004; 30: 326–33 (discussion: 33).PubMedGoogle Scholar
  12. 12.
    Schwartz RA. Keratoacanthoma. J Am Acad Dermatol 1994; 30: 1–19.CrossRefPubMedGoogle Scholar
  13. 13.
    Dessoukey MW, Omar MF, Abdel–Dayem H. Eruptive keratoacanthomas associated with immunosuppressive therapy in a patient with systemic lupus erythematosus. J Am Acad Dermatol 1997; 37: 478–80.CrossRefPubMedGoogle Scholar
  14. 14.
    Harvey NT, Millward M, Wood BA. Squamoproliferative lesions arising in the setting of BRAF inhibition. Am J Dermatopathol 2012; 34: 822–6.CrossRefPubMedGoogle Scholar
  15. 15.
    Karaa A, Khachemoune A. Keratoacanthoma: a tumor in search of a classification. Int J Dermatol 2007; 46: 671–8.CrossRefPubMedGoogle Scholar
  16. 16.
    Stratigos A, Garbe C, Lebbe C, et al. Diagnosis and treatment of invasive squamous cell carcinoma of the skin: European consensusbased interdisciplinary guideline. Eur J Cancer 2015; 51: 1989–2007.CrossRefPubMedGoogle Scholar
  17. 17.
    Edge SB, Compton CC. The American Joint Committee on Cancer: the 7th edition of the AJCC cancer staging manual and the future of TNM. Ann Surg Oncol 2010; 17: 1471–4.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Alam M, Ratner D. Cutaneous squamous–cell carcinoma. N Engl J Med 2001; 344: 975–83.CrossRefPubMedGoogle Scholar
  19. 19.
    Brantsch KD, Meisner C, Schonfisch B, et al. Analysis of risk factors determining prognosis of cutaneous squamous–cell carcinoma: a prospective study. Lancet Oncol 2008; 9: 713–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Lane DP. Cancer. p53, guardian of the genome. Nature 1992; 358: 15–6.CrossRefPubMedGoogle Scholar
  21. 21.
    Nindl I, Gottschling M, Krawtchenko N, et al. Low prevalence of p53, p16(INK4a) and Ha–ras tumour–specific mutations in low–graded actinic keratosis. Br J Dermatol 2007; 156: 34–9.CrossRefPubMedGoogle Scholar
  22. 22.
    Ziegler A, Jonason AS, Leffell DJ, et al. Sunburn and p53 in the onset of skin cancer. Nature 1994; 372: 773–6.CrossRefPubMedGoogle Scholar
  23. 23.
    Li YY, Hanna GJ, Laga AC, Haddad RI, Lorch JH, Hammerman PS. Genomic analysis of metastatic cutaneous squamous cell carcinoma. Clin Cancer Res 2015; 21: 1447–56.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Yilmaz AS, Ozer HG, Gillespie JL, et al. Differential mutation frequencies in metastatic cutaneous squamous cell carcinomas versus primary tumors. Cancer 2017; 123: 1184–93.CrossRefPubMedGoogle Scholar
  25. 25.
    Bito T, Ueda M, Ahmed NU, Nagano T, Ichihashi M. Cyclin D and retinoblastoma gene product expression in actinic keratosis and cutaneous squamous cell carcinoma in relation to p53 expression. J Cutan Pathol 1995; 22: 427–34.CrossRefPubMedGoogle Scholar
  26. 26.
    Burnworth B, Popp S, Stark HJ, et al. Gain of 11q/cyclin D1 overexpression is an essential early step in skin cancer development and causes abnormal tissue organization and differentiation. Oncogene 2006; 25: 4399–412.CrossRefPubMedGoogle Scholar
  27. 27.
    Jensen V, Prasad AR, Smith A, et al. Prognostic criteria for squamous cell cancer of the skin. J Surg Res 2010; 159: 509–16.CrossRefPubMedGoogle Scholar
  28. 28.
    Shen Y, Xu J, Jin J, Tang H, Liang J. Cyclin D1 expression in Bowen’s disease and cutaneous squamous cell carcinoma. Mol Clin Oncol 2014; 2: 545–8.CrossRefPubMedPubMedCentralGoogle Scholar
  29. 29.
    Saawarn S, Astekar M, Saawarn N, Dhakar N, Gomateshwar Sagari S. Cyclin d1 expression and its correlation with histopathological differentiation in oral squamous cell carcinoma. ScientificWorldJournal 2012; 2012: 978327.CrossRefPubMedPubMedCentralGoogle Scholar
  30. 30.
    Liang SB, Furihata M, Takeuchi T, et al. Overexpression of cyclin D1 in nonmelanocytic skin cancer. Virchows Arch 2000; 436: 370–6.CrossRefPubMedGoogle Scholar
  31. 31.
    Huang K, Huang C, Shan K, Chen J, Li H. Significance of PC cellderived growth factor and cyclin D1 expression in cutaneous squamous cell carcinoma. Clin Exp Dermatol 2012; 37: 411–7.CrossRefPubMedGoogle Scholar
  32. 32.
    Kusters–Vandevelde HV, Van Leeuwen A, Verdijk MA, et al. CDKN2A but not TP53 mutations nor HPV presence predict poor outcome in metastatic squamous cell carcinoma of the skin. Int J Cancer 2010; 126: 2123–32.PubMedGoogle Scholar
  33. 33.
    Lee CS, Bhaduri A, Mah A, et al. Recurrent point mutations in the kinetochore gene KNSTRN in cutaneous squamous cell carcinoma. Nat Genet 2014; 46: 1060–2.CrossRefPubMedPubMedCentralGoogle Scholar
  34. 34.
    Chiu CP, Harley CB. Replicative senescence and cell immortality: the role of telomeres and telomerase. Proc Soc Exp Biol Med 1997; 214: 99–106.CrossRefPubMedGoogle Scholar
  35. 35.
    Horn S, Figl A, Rachakonda PS, et al. TERT promoter mutations in familial and sporadic melanoma. Science 2013; 339: 959–61.CrossRefPubMedGoogle Scholar
  36. 36.
    Huang FW, Hodis E, Xu MJ, Kryukov GV, Chin L, Garraway LA. Highly recurrent TERT promoter mutations in human melanoma. Science 2013; 339: 957–9.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Griewank KG, Murali R, Schilling B, et al. TERT promoter mutations are frequent in cutaneous basal cell carcinoma and squamous cell carcinoma. PLoS One 2013; 8: e80354.CrossRefGoogle Scholar
  38. 38.
    Scott GA, Laughlin TS, Rothberg PG. Mutations of the TERT promoter are common in basal cell carcinoma and squamous cell carcinoma. Mod Pathol 2014; 27: 516–23.CrossRefPubMedGoogle Scholar
  39. 39.
    Vinagre J, Pinto V, Celestino R, et al. Telomerase promoter mutations in cancer: an emerging molecular biomarker? Virchows Arch 2014; 465: 119–33.CrossRefPubMedGoogle Scholar
  40. 40.
    Killela PJ, Reitman ZJ, Jiao Y, et al. TERT promoter mutations occur frequently in gliomas and a subset of tumors derived from cells with low rates of self–renewal. Proc Natl Acad Sci U S A 2013; 110: 6021–6.CrossRefPubMedPubMedCentralGoogle Scholar
  41. 41.
    Campos MA, Macedo S, Fernandes M, et al. TERT promoter mutations are associated with poor prognosis in cutaneous squamous cell carcinoma. J Am Acad Dermatol 2018. pii: S0190–9622(18)32486–1. doi: 10.1016/j.jaad.2018.08.032. [Epub ahead of print]Google Scholar
  42. 42.
    Populo H, Boaventura P, Vinagre J, et al. TERT promoter mutations in skin cancer: the effects of sun exposure and X–irradiation. J Invest Dermatol 2014; 134: 2251–7.CrossRefPubMedGoogle Scholar
  43. 43.
    Rachakonda PS, Hosen I, de Verdier PJ, et al. TERT promoter mutations in bladder cancer affect patient survival and disease recurrence through modification by a common polymorphism. Proc Natl Acad Sci U S A 2013; 110: 17426–31.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Remke M, Ramaswamy V, Peacock J, et al. TERT promoter mutations are highly recurrent in SHH subgroup medulloblastoma. Acta Neuropathol 2013; 126: 917–29.CrossRefPubMedPubMedCentralGoogle Scholar
  45. 45.
    Melo M, da Rocha AG, Vinagre J, et al. TERT promoter mutations are a major indicator of poor outcome in differentiated thyroid carcinomas. J Clin Endocrinol Metab 2014; 99: e754–65.CrossRefGoogle Scholar
  46. 46.
    Devgan V, Mammucari C, Millar SE, Brisken C, Dotto GP. p21WAF1/Cip1 is a negative transcriptional regulator of Wnt4 expression downstream of Notch1 activation. Genes Dev 2005; 19: 1485–95.CrossRefPubMedPubMedCentralGoogle Scholar
  47. 47.
    Niimi H, Pardali K, Vanlandewijck M, Heldin CH, Moustakas A. Notch signaling is necessary for epithelial growth arrest by TGF–beta. J Cell Biol 2007; 176: 695–707.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Rangarajan A, Talora C, Okuyama R, et al. Notch signaling is a direct determinant of keratinocyte growth arrest and entry into differentiation. EMBO J 2001; 20: 3427–36.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Talora C, Cialfi S, Segatto O, et al. Constitutively active Notch1 induces growth arrest of HPV–positive cervical cancer cells via separate signaling pathways. Exp Cell Res 2005; 305: 343–54.CrossRefPubMedGoogle Scholar
  50. 50.
    Wang NJ, Sanborn Z, Arnett KL, et al. Loss–of–function mutations in Notch receptors in cutaneous and lung squamous cell carcinoma. Proc Natl Acad Sci U S A 2011; 108: 17761–6.CrossRefPubMedPubMedCentralGoogle Scholar
  51. 51.
    South AP, Purdie KJ, Watt SA, et al. NOTCH1 mutations occur early during cutaneous squamous cell carcinogenesis. J Invest Dermatol 2014; 134: 2630–8.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    Schwaederle M, Elkin SK, Tomson BN, Carter JL, Kurzrock R. Squamousness: next–generation sequencing reveals shared molecular features across squamous tumor types. Cell Cycle 2015; 14: 2355–61.CrossRefPubMedPubMedCentralGoogle Scholar
  53. 53.
    Fujii Y, Yada M, Nishiyama M, et al. Fbxw7 contributes to tumor suppression by targeting multiple proteins for ubiquitin–dependent degradation. Cancer Sci 2006; 97: 729–36.CrossRefPubMedGoogle Scholar
  54. 54.
    Barbieri CE, Pietenpol JA. p63 and epithelial biology. Exp Cell Res 2006; 312: 695–706.CrossRefPubMedGoogle Scholar
  55. 55.
    Koster MI, Kim S, Roop DR. p63 deficiency: a failure of lineage commitment or stem cell maintenance? J Investig Dermatol Symp Proc 2005; 10: 118–23.CrossRefPubMedGoogle Scholar
  56. 56.
    Zhang H, Liu J, Cagle PT, Allen TC, Laga AC, Zander DS. Distinction of pulmonary small cell carcinoma from poorly differentiated squamous cell carcinoma: an immunohistochemical approach. Mod Pathol 2005; 18: 111–8.CrossRefPubMedGoogle Scholar
  57. 57.
    Pickering CR, Zhou JH, Lee JJ, et al. Mutational landscape of aggressive cutaneous squamous cell carcinoma. Clin Cancer Res 2014; 20: 6582–92.CrossRefPubMedPubMedCentralGoogle Scholar
  58. 58.
    Kalay E, Sezgin O, Chellappa V, et al. Mutations in RIPK4 cause the autosomal–recessive form of popliteal pterygium syndrome. Am J Hum Genet 2012; 90: 76–85.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Grandis JR, Chakraborty A, Zeng Q, Melhem MF, Tweardy DJ. Downmodulation of TGF–alpha protein expression with antisense oligonucleotides inhibits proliferation of head and neck squamous carcinoma but not normal mucosal epithelial cells. J Cell Biochem 1998; 69: 55–62.CrossRefPubMedGoogle Scholar
  60. 60.
    Ridd K, Bastian BC. Somatic mutation of epidermal growth factor receptor in a small subset of cutaneous squamous cell carcinoma. J Invest Dermatol 2010; 130: 901–3.CrossRefPubMedGoogle Scholar
  61. 61.
    Mauerer A, Herschberger E, Dietmaier W, Landthaler M, Hafner C. Low incidence of EGFR and HRAS mutations in cutaneous squamous cell carcinomas of a German cohort. Exp Dermatol 2011; 20: 848–50.CrossRefPubMedGoogle Scholar
  62. 62.
    Fogarty GB, Conus NM, Chu J, McArthur G. Characterization of the expression and activation of the epidermal growth factor receptor in squamous cell carcinoma of the skin. Br J Dermatol 2007; 156: 92–8.CrossRefPubMedGoogle Scholar
  63. 63.
    Uribe P, Gonzalez S. Epidermal growth factor receptor (EGFR) and squamous cell carcinoma of the skin: molecular bases for EGFRtargeted therapy. Pathol Res Pract 2011; 207: 337–42.CrossRefPubMedGoogle Scholar
  64. 64.
    Lipozencic J, Celic D, Strnad M, et al. Skin cancers in Croatia, 2003–2005: epidemiological study. Coll Antropol 2010; 34: 865–9.PubMedGoogle Scholar
  65. 65.
    Durinck S, Ho C, Wang NJ, et al. Temporal dissection of tumorigenesis in primary cancers. Cancer Discov 2011; 1: 137–43.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Downward J. Targeting RAS signalling pathways in cancer therapy. Nat Rev Cancer 2003; 3: 11–22.CrossRefPubMedGoogle Scholar
  67. 67.
    Leffell DJ. The scientific basis of skin cancer. J Am Acad Dermatol 2000; 42: 18–22.CrossRefPubMedGoogle Scholar
  68. 68.
    Zaravinos A, Kanellou P, Baritaki S, Bonavida B, Spandidos DA. BRAF and RKIP are significantly decreased in cutaneous squamous cell carcinoma. Cell Cycle 2009; 8: 1402–8.CrossRefPubMedGoogle Scholar
  69. 69.
    Flaherty KT, Puzanov I, Kim KB, et al. Inhibition of mutated, activated BRAF in metastatic melanoma. N Engl J Med 2010; 363: 809–19.CrossRefPubMedPubMedCentralGoogle Scholar
  70. 70.
    Chapman PB, Hauschild A, Robert C, et al. Improved survival with vemurafenib in melanoma with BRAF V600E mutation. N Engl J Med 2011; 364: 2507–16.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Oberholzer PA, Kee D, Dziunycz P, et al. RAS mutations are associated with the development of cutaneous squamous cell tumors in patients treated with RAF inhibitors. J Clin Oncol 2012; 30: 316–21.CrossRefPubMedGoogle Scholar
  72. 72.
    Maertens O, Cichowski K. An expanding role for RAS GTPase activating proteins (RAS GAPs) in cancer. Adv Biol Regul 2014; 55: 1–14.CrossRefPubMedGoogle Scholar
  73. 73.
    Davoli T, Xu AW, Mengwasser KE, et al. Cumulative haploinsufficiency and triplosensitivity drive aneuploidy patterns and shape the cancer genome. Cell 2013; 155: 948–62.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Tanaka N, Odajima T, Ogi K, Ikeda T, Satoh M. Expression of E–cadherin, alpha–catenin, and beta–catenin in the process of lymph node metastasis in oral squamous cell carcinoma. Br J Cancer 2003; 89: 557–63.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Chiles MC, Ai L, Zuo C, Fan CY, Smoller BR. E–cadherin promoter hypermethylation in preneoplastic and neoplastic skin lesions. Mod Pathol 2003; 16: 1014–8.CrossRefPubMedGoogle Scholar
  76. 76.
    Dunne J, Hanby AM, Poulsom R, et al. Molecular cloning and tissue expression of FAT, the human homologue of the Drosophila fat gene that is located on chromosome 4q34–q35 and encodes a putative adhesion molecule. Genomics 1995; 30: 207–23.CrossRefPubMedGoogle Scholar
  77. 77.
    Bergers G, Brekken R, McMahon G, et al. Matrix metalloproteinase–9 triggers the angiogenic switch during carcinogenesis. Nat Cell Biol 2000; 2: 737–44.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    O’Grady A, Dunne C, O’Kelly P, Murphy GM, Leader M, Kay E. Differential expression of matrix metalloproteinase (MMP)–2, MMP–9 and tissue inhibitor of metalloproteinase (TIMP)–1 and TIMP–2 in non–melanoma skin cancer: implications for tumour progression. Histopathology 2007; 51: 793–804.CrossRefPubMedGoogle Scholar
  79. 79.
    Bouck N. P53 and angiogenesis. Biochim Biophys Acta 1996; 1287: 63–6.PubMedGoogle Scholar
  80. 80.
    Hirakawa S, Kodama S, Kunstfeld R, Kajiya K, Brown LF, Detmar M. VEGF–A induces tumor and sentinel lymph node lymphangiogenesis and promotes lymphatic metastasis. J Exp Med 2005; 201: 1089–99.CrossRefPubMedPubMedCentralGoogle Scholar
  81. 81.
    Higashi Y, Kanekura T, Kanzaki T. Enhanced expression of cyclooxygenase (COX)–2 in human skin epidermal cancer cells: evidence for growth suppression by inhibiting COX–2 expression. Int J Cancer 2000; 86: 667–71.CrossRefPubMedGoogle Scholar
  82. 82.
    An KP, Athar M, Tang X, et al. Cyclooxygenase–2 expression in murine and human nonmelanoma skin cancers: implications for therapeutic approaches. Photochem Photobiol 2002; 76: 73–80.CrossRefPubMedGoogle Scholar
  83. 83.
    Smits T, Olthuis D, Blokx WA, et al. Aneuploidy and proliferation in keratinocytic intraepidermal neoplasias. Exp Dermatol 2007; 16: 81–6.CrossRefPubMedGoogle Scholar
  84. 84.
    Stephen JK, Chen KM, Havard S, Harris G, Worsham MJ. Promoter methylation in head and neck tumorigenesis. Methods Mol Biol 2012; 863: 187–206.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Darr OA, Colacino JA, Tang AL, et al. Epigenetic alterations in metastatic cutaneous carcinoma. Head Neck 2015; 37: 994–1001.CrossRefPubMedGoogle Scholar
  86. 86.
    McLaughlin–Drubin ME, Munger K. Oncogenic activities of human papillomaviruses. Virus Res 2009; 143: 195–208.CrossRefPubMedPubMedCentralGoogle Scholar
  87. 87.
    Munger K, Howley PM. Human papillomavirus immortalization and transformation functions. Virus Res 2002; 89: 213–28.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Bouvard V, Baan R, Straif K, et al. A review of human carcinogens–Part B: biological agents. Lancet Oncol 2009; 10: 321–2.CrossRefPubMedGoogle Scholar
  89. 89.
    Aldabagh B, Angeles JG, Cardones AR, Arron ST. Cutaneous squamous cell carcinoma and human papillomavirus: is there an association? Dermatol Surg 2013; 39: 1–23.CrossRefPubMedGoogle Scholar
  90. 90.
    Astori G, Lavergne D, Benton C, et al. Human papillomaviruses are commonly found in normal skin of immunocompetent hosts. J Invest Dermatol 1998; 110: 752–5.CrossRefPubMedGoogle Scholar
  91. 91.
    Vasiljevic N, Hazard K, Dillner J, Forslund O. Four novel human betapapillomaviruses of species 2 preferentially found in actinic keratosis. J Gen Virol 2008; 89: 2467–74.CrossRefPubMedGoogle Scholar
  92. 92.
    Weissenborn SJ, Nindl I, Purdie K, et al. Human papillomavirus–DNA loads in actinic keratoses exceed those in non–melanoma skin cancers. J Invest Dermatol 2005; 125: 93–7.CrossRefPubMedGoogle Scholar
  93. 93.
    Arron ST, Ruby JG, Dybbro E, Ganem D, Derisi JL. Transcriptome sequencing demonstrates that human papillomavirus is not active in cutaneous squamous cell carcinoma. J Invest Dermatol 2011; 131: 1745–53.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Ganzenmueller T, Yakushko Y, Kluba J, Henke–Gendo C, Gutzmer R, Schulz TF. Next–generation sequencing fails to identify human virus sequences in cutaneous squamous cell carcinoma. Int J Cancer 2012; 131: e1173–9.CrossRefGoogle Scholar
  95. 95.
    Li J, Wang K, Gao F, et al. Array comparative genomic hybridization of keratoacanthomas and squamous cell carcinomas: different patterns of genetic aberrations suggest two distinct entities. J Invest Dermatol 2012; 132: 2060–6.CrossRefPubMedGoogle Scholar
  96. 96.
    Goudie DR, D’Alessandro M, Merriman B, et al. Multiple selfhealing squamous epithelioma is caused by a disease–specific spectrum of mutations in TGFBR1. Nat Genet 2011; 43: 365–9.CrossRefPubMedGoogle Scholar
  97. 97.
    Pezzolo A, Pistorio A, Gambini C, et al. Intratumoral diversity of telomere length in individual neuroblastoma tumors. Oncotarget 2015; 6: 7493–503.CrossRefPubMedGoogle Scholar
  98. 98.
    Blaszczak W, Barczak W, Wegner A, Golusinski W, Suchorska WM. Clinical value of monoclonal antibodies and tyrosine kinase inhibitors in the treatment of head and neck squamous cell carcinoma. Med Oncol 2017; 34: 60.CrossRefPubMedPubMedCentralGoogle Scholar
  99. 99.
    Wang Z, Sun Y. Targeting p53 for novel anticancer therapy. Transl Oncol 2010; 3: 1–12.CrossRefPubMedPubMedCentralGoogle Scholar
  100. 100.
    Takebe N, Nguyen D, Yang SX. Targeting notch signaling pathway in cancer: clinical development advances and challenges. Pharmacol Ther 2014; 141: 140–9.CrossRefPubMedGoogle Scholar
  101. 101.
    Cao Y, Zhang L, Ritprajak P, et al. Immunoregulatory molecule B7–H1 (CD274) contributes to skin carcinogenesis. Cancer Res 2011; 71: 4737–41.CrossRefPubMedGoogle Scholar
  102. 102.
    Day F, Kumar M, Fenton L, Gedye C. Durable response of metastatic squamous cell carcinoma of the skin to ipilimumab immunotherapy. J Immunother 2017; 40: 36–8.CrossRefPubMedGoogle Scholar
  103. 103.
    Winkler JK, Schneiderbauer R, Bender C, et al. Antiprogrammed cell death–1 therapy in nonmelanoma skin cancer. Br J Dermatol 2017; 176: 498–502.CrossRefPubMedGoogle Scholar
  104. 104.
    Chang AL, Kim J, Luciano R, Sullivan–Chang L, Colevas AD. A case report of unresectable cutaneous squamous cell carcinoma responsive to pembrolizumab, a programmed cell death protein 1 inhibitor. JAMA Dermatol 2016; 152: 106–8.CrossRefPubMedGoogle Scholar
  105. 105.
    Lipson EJ, Bagnasco SM, Moore J Jr., et al. Tumor regression and allograft rejection after administration of anti–PD–1. N Engl J Med 2016; 374: 896–8.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Borradori L, Sutton B, Shayesteh P, Daniels GA. Rescue therapy with anti–programmed cell death protein 1 inhibitors of advanced cutaneous squamous cell carcinoma and basosquamous carcinoma: preliminary experience in five cases. Br J Dermatol 2016; 175: 1382–6.CrossRefPubMedGoogle Scholar

Copyright information

© John Libbey Eurotext 2018

Authors and Affiliations

  • Manuel Antonio Campos
    • 1
    • 2
    • 3
    • 4
  • José Manuel Lopes
    • 1
    • 2
    • 3
    • 5
    • 6
  • Paula Soares
    • 1
    • 2
    • 3
    • 5
  1. 1.Instituto de Investigação e Inovação em SaúdeUniversidade do PortoPortoPortugal
  2. 2.Institute of Molecular Pathology and Immunology of the University of Porto (Ipatimup) – Cancer Signaling and MetabolismRua Dr. Roberto Frias, s/nPortoPortugal
  3. 3.Medical Faculty, University of PortoAl. Prof. Hernâni MonteiroPortoPortugal
  4. 4.Dermatology Department, Centro Hospitalar Vila Nova de GaiaRua Conceição FernandesVila Nova de GaiaPortugal
  5. 5.Department of PathologyMedical Faculty of Porto UniversityPortoPortugal
  6. 6.Department of Pathology, Hospital de S. JoãoAl. Prof. Hernâni MonteiroPortoPortugal

Personalised recommendations