European Cytokine Network

, Volume 29, Issue 3, pp 83–94 | Cite as

Obesity and inflammation

  • Jacek KarczewskiEmail author
  • Ewelina Śledzińska
  • Alina Baturo
  • Izabela Jończyk
  • Aleksander Maleszko
  • Paweł Samborski
  • Beata Begier-Krasińska
  • Agnieszka Dobrowolska
Review Article


The prevalence of obesity has recently increased dramatically and has contributed to the increasing prevalence of various pathological conditions, including type 2 diabetes mellitus, nonalcoholic fatty liver disease, asthma, various types of cancer, cardiovascular and neurodegenerative diseases, and others. Accumulating evidence points to localized inflammation in adipose tissue, which, in turn, promotes systemic low-grade inflammation as a primary force contributing to the development of these pathologies. A better understanding of the underlying mechanisms behind obesity-induced adipose tissue inflammation is required to develop effective therapeutic or prophylactic strategies. This review is aimed to present the current knowledge of adipose tissue inflammation associated with obesity.

Key words

obesity inflammation adipose tissue insulin resistance 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    NCD Risk Factor Collaboration (NCD-Risc). Worldwide trends in body-mass index, underweight, overweight and obesity from 1975 to 2016: a pooled analysis of 2416 population-based measurement studies in 128·9 million children, adolescents, and adults. Lancet 2017; 390: 2627–42.Google Scholar
  2. 2.
  3. 3.
    Schwartz MW, Seeley RJ, Zeltser LM, et al. Obesity pathogenesis: an endocrine society scientific statement. Endocr Rev 2017; 38: 267–96.CrossRefPubMedPubMedCentralGoogle Scholar
  4. 4.
    Ghosh S, Bouchard C. Convergence between biological, behavioural and genetic determinants of obesity. Nat Rev Genet 2017; 18: 731–48.CrossRefPubMedGoogle Scholar
  5. 5.
    Sikaris KA. The clinical biochemistry of obesity. Clin Biochem Rev 2004; 25: 165–81.PubMedPubMedCentralGoogle Scholar
  6. 6.
    Hotamisligil GS. Inflammation and metabolic disorders. Nature 2006; 444: 860–7.CrossRefGoogle Scholar
  7. 7.
    Lumeng CN, Saltiel AR. Inflammatory links between obesity and metabolic disease. J Clin Invest 2011; 121: 2111–7.CrossRefPubMedPubMedCentralGoogle Scholar
  8. 8.
    Olefsky JM, Glass CK. Macrophages, inflammation and insulin resistance. Annu Rev Physiol 2010; 72: 219–46.CrossRefPubMedGoogle Scholar
  9. 9.
    Reilly SM, Saltiel AR. Adapting to obesity with adipose tissue inflammation. Nat Rev Endocr 2017; 13: 633–43.CrossRefGoogle Scholar
  10. 10.
    Kotas ME, Medzhitov R. Homeostasis, inflammation and disease susceptibility. Cell 2015; 160: 816–27.CrossRefPubMedPubMedCentralGoogle Scholar
  11. 11.
    Rosen ED, Spiegelman BM. Adipocytes as regulators of energy balance and glucose homeostasis. Nature 2006; 2006:444.Google Scholar
  12. 12.
    Saltiel AR, Kahn CR. Insulin signalling and the regulation of glucose and lipid metabolism. Nature 2001; 414: 799–806.CrossRefPubMedGoogle Scholar
  13. 13.
    Buettner C, Muse ED, Cheng A, et al. Leptin controls adipose tissue lipogenesis via central, STAT3-independent mechanisms. Nat Med 2008; 14: 667–75.CrossRefPubMedPubMedCentralGoogle Scholar
  14. 14.
    Scarpace PJ, Matheny M. Leptin induction of UCP1 gene expression is dependent on sympathetic innervation. Am J Physiol 1998; 275: E259–64.PubMedGoogle Scholar
  15. 15.
    Considine RV, Sinha MK, Heiman ML, et al. Serum immunoreactive-leptin concentrations in normal-weight and obese humans. N Engl J Med 1996; 334: 292–5.CrossRefPubMedGoogle Scholar
  16. 16.
    Shen J, Tanida M, Niijima A, Nagai K. In vivo effects of leptin on autonomic nerve activity and lipolysis in rats. Neurosci Lett 2007; 416: 193–7.CrossRefPubMedGoogle Scholar
  17. 17.
    McLaughlin T, Ackerman SE, Shen L, Engleman E. Role of innate and adaptive immunity in obesity-associated metabolic disease. J Clin Invest 2017; 127: 5–13.CrossRefPubMedPubMedCentralGoogle Scholar
  18. 18.
    Maurizi G, Della Guardia L, Maurizi A, Poloni A. Adipocytes properties and crosstalk with immune system in obesity-related inflammation. J Cell Physiol 2018; 233: 88–97.CrossRefPubMedGoogle Scholar
  19. 19.
    Zhu Q, Scherer PE. Immunologic and endocrine functions of adipose tissue: implications for kidney disease. Nat Rev Nephrol 2018; 14: 105–20.CrossRefPubMedGoogle Scholar
  20. 20.
    Curat CA, Miranville A, Sengenès C, et al. From blood monocytes to adipose tissue-resident macrophages: induction of diapedesis by human mature adipocytes. Diabetes 2004; 53: 1285–92.CrossRefPubMedGoogle Scholar
  21. 21.
    Schipper HS, Rakhshandehroo M, van de Graaf SF, et al. Natural killer T cells in adipose tissue prevent insulin resistance. J Clin Invest 2012; 122: 3343–54.CrossRefPubMedPubMedCentralGoogle Scholar
  22. 22.
    Giordano A, Smorlesi A, Frontini A, Barbatelli G, Cinti S. White, brown and pink adipocytes: the extraordinary plasticity of the adipose organ. Eur J Endocrinol 2014; 170: R159–71.CrossRefPubMedGoogle Scholar
  23. 23.
    Wu J, Boström P, Sparks LM, et al. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 2012; 150: 366–76.CrossRefPubMedPubMedCentralGoogle Scholar
  24. 24.
    Cohen P, Spiegelman BM. Brown and beige fat: molecular parts of a thermogenic machine. Diabetes 2015; 64: 2346–51.CrossRefPubMedPubMedCentralGoogle Scholar
  25. 25.
    Lidell ME, Betz MJ, Dahlqvist Leinhard O, et al. Evidence for two types of brown adipose tissue in humans. Nat Med 2013; 19: 631–4.CrossRefPubMedGoogle Scholar
  26. 26.
    Tews D, Schwar V, Scheithauer M, et al. Comparative gene array analysis of progenitor cells from human paired deep neck and subcutaneous adipose tissue. Mol Cell Endocrinol 2014; 2014: 41–50.CrossRefGoogle Scholar
  27. 27.
    Lizcano F, Vargas D. Biology of beige adipocyte and possible therapy for type 2 diabetes and obesity. Int J Endocr 2016; 2016: 9542061.CrossRefGoogle Scholar
  28. 28.
    van den Berg SM, van Dam AD, Rensen PC, de Winther MP, Lutgens E. Immune modulation of brown(ing) adipose tissue in obesity. Endocr Rev 2017; 38: 46–68.PubMedGoogle Scholar
  29. 29.
    Cani PD, Bibiloni R, Knauf C, et al. Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 2008; 57: 1470–81.CrossRefPubMedGoogle Scholar
  30. 30.
    Damms-Machado A, Louis S, Schnitzer A, et al. Gut permeability is related to body weight, fatty liver disease and insulin resistance in obese individuals undergoing weight reduction. Am J Clin Nutr 2017; 105: 127–35.CrossRefPubMedGoogle Scholar
  31. 31.
    Jayashree B, Bibin YS, Prabhu D, et al. Increased circulatory levels of lipopolysaccharide (LPS) and zonulin signify novel biomarkers of proinflammation in patients with type 2 diabetes. Mol Cell Biochem 2014; 388: 203–10.CrossRefPubMedGoogle Scholar
  32. 32.
    Cani PD, Amar J, Iglesias MA, et al. Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes 2007; 56: 1761–72.CrossRefPubMedGoogle Scholar
  33. 33.
    de La Serre CB, Ellis CL, Lee J, Hartman AL, Rutledge JC, Raybould HE. Propensity to high-fat diet-induced obesity in rats is associated with changes in the gut microbiota and gut inflammation. Am J Physiol Gastrointest Liver Physiol 2010; 299: G440–8.CrossRefGoogle Scholar
  34. 34.
    Saad MJ, Santos A, Prada PO. Linking gut microbiota and inflammation to obesity and insulin resistance. Physiology (Bethesda) 2016; 31: 283–93.Google Scholar
  35. 35.
    Everard A, Belzer C, Geurts L, et al. Cross-talk between Akkermansia muciniphila and intestinal epithelium controls diet-induced obesity. Proc Natl Acad Sci U S A 2013; 110: 9066–71.CrossRefPubMedPubMedCentralGoogle Scholar
  36. 36.
    Jumpertz R, Le DS, Turnbaugh PJ, et al. Energy-balance studies reveal associations between gut microbes, caloric load, and nutrient absorption in humans. Am J Clin Nutr 2011; 94: 58–65.CrossRefPubMedPubMedCentralGoogle Scholar
  37. 37.
    Pauli JR, Ropelle ER, Cintra DE, et al. Acute physical exercise reverses S-nitrosation of the insulin receptor, insulin receptor substrate 1 and protein kinase B/Akt in diet-induced obeseWistar rats. J Physiol 2008; 586: 659–71.CrossRefPubMedGoogle Scholar
  38. 38.
    Stern JH, Rutkowski J M, Scherer P E. Adiponectin, leptin and fatty acids in the maintenance of metabolic homeostasis through adipose tissue crosstalk. Cell Metab 2016; 23: 770–84.CrossRefPubMedPubMedCentralGoogle Scholar
  39. 39.
    Erion DM, Shulman GI. Diacylglycerol-mediated insulin resistance. Nat Med 2010; 16: 400–2.CrossRefPubMedPubMedCentralGoogle Scholar
  40. 40.
    Nguyen MT, Favelyukis S, Nguyen AK, et al. A subpopulation of macrophages infiltrates hypertrophic adipose tissue and is activated by free fatty acids viaToll-like receptors 2 and 4 and JNK-dependent pathways. J Biol Chem 2007; 282: 35279–92.CrossRefPubMedGoogle Scholar
  41. 41.
    Lee JY, Zhao L, Youn HS, et al. Saturated fatty acid activates but polyunsaturated fatty acid inhibits Toll-like receptor 2 dimerized with Toll-like receptor 6 or 1. J Biol Chem 2004; 279: 16971–9.CrossRefPubMedGoogle Scholar
  42. 42.
    Wang C, Ha X, Li W, et al. Correlation of TLR4 and KLF7 in inflammation induced by obesity. Inflammation 2017; 40: 42–51.CrossRefPubMedGoogle Scholar
  43. 43.
    Ghanim H, Mohanty P, Deopurkar R, et al. Acute modulation of toll-like receptors by insulin. Diabetes Care 2008; 31: 1827–31.CrossRefPubMedPubMedCentralGoogle Scholar
  44. 44.
    Vitseva OI, Tanriverdi K, Tchkonia TT, et al. Inducible Toll-like receptor and NF-kappaB regulatory pathway expression in human adipose tissue. Obesity 2008; 16: 932–7.CrossRefPubMedGoogle Scholar
  45. 45.
    Makowski L, Brittingham KC, Reynolds JM, Suttles J, Hotamisligil GS. The fatty acid-binding protein, aP2, coordinates macrophage cholesterol trafficking and inflammatory activity. Macrophage expression of aP2 impacts peroxisome proliferator-activated receptor gamma and IkappaB kinase activities. J Biol Chem 2005; 280: 12888–95.PubMedGoogle Scholar
  46. 46.
    Blagih J, Coulombe F, Vincent EE, et al. The energy sensor AMPK regulates T cell metabolic adaptation and effector responses in vivo. Immunity 2015; 42: 41–54.CrossRefPubMedGoogle Scholar
  47. 47.
    Hotamisligil GS. Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell 2010; 140: 900–17.CrossRefPubMedPubMedCentralGoogle Scholar
  48. 48.
    Fischer-Posovszky P, Wang QA, Asterholm IW, Rutkowski JM, Scherer PE. Targeted deletion of adipocytes by apoptosis leads to adipose tissue recruitment of alternatively activated M2 macrophages. Endocrinology 2011; 152: 3074–81.CrossRefPubMedPubMedCentralGoogle Scholar
  49. 49.
    Ortega FJ, Moreno-Navarrete JM, Ribas V, et al. Subcutaneous fat shows higher thyroid hormone receptor-alpha1 gene expression than omental fat. Obesity 2009; 17: 2134–41.CrossRefPubMedGoogle Scholar
  50. 50.
    Cotillard A, Poitou C, Torcivia A, et al. Adipocyte size threshold matters: link with risk of type 2 diabetes and improved insulin resistance after gastric bypas. J Clin Endocrinol Metab 2014; 99: E1466–70.CrossRefPubMedGoogle Scholar
  51. 51.
    Guilherme A, Virbasius JV, Puri V, Czech MP. Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 2008; 9: 367–77.CrossRefPubMedPubMedCentralGoogle Scholar
  52. 52.
    López-Jaramillo P, Gómez-Arbeláez D, López-López J, et al. The role of leptin/adiponectin ratio in metabolic syndrome and diabetes. Horm Mol Biol Clin Invest 2014; 18: 37–45.Google Scholar
  53. 53.
    Poloni A, Maurizi G, Mattiucci D, et al. Biosafety evidence for human dedifferentiated adipocytes. J Cell Physiol 2015; 230: 1523–33.CrossRefGoogle Scholar
  54. 54.
    Lumeng CN, Deyoung SM, Bodzin JL, Saltiel AR. Increased inflammatory properties of adipose tissue macrophages recruited during diet-induced obesity. Diabetes 2007; 56: 16–23.CrossRefPubMedPubMedCentralGoogle Scholar
  55. 55.
    Haase J, Weyer U, Immig K, et al. Local proliferation of macrophages in adipose tissue during obesity-induced inflammation. Diabetologia 2014; 57: 562–71.CrossRefPubMedGoogle Scholar
  56. 56.
    Jin C, Flavell RA. Innate sensors of pathogen and stress: linking inflammation to obesity. J Allergy Clin Immunol 2013; 132: 287–94.CrossRefPubMedGoogle Scholar
  57. 57.
    Lamkanfi M, Dixit VM. Inflammasomes: guardians of cytosolic sanctity. Immunol Rev 2009; 227: 95–105.CrossRefPubMedGoogle Scholar
  58. 58.
    Vandanmagsar B, Youm YH, Ravussin A, et al. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med 2011; 17: 179–88.CrossRefPubMedPubMedCentralGoogle Scholar
  59. 59.
    Lee YS, Kim JW, Osborne O, et al. Increased adipocyte O2 consumption triggers HIF-1α, causing inflammation and insulin resistance in obesity. Cell 2014; 157: 1339–52.CrossRefPubMedPubMedCentralGoogle Scholar
  60. 60.
    Ye J, Gao Z, Yin J, He Q. Hypoxia is a potential risk factor for chronic inflammation and adiponectin reduction in adipose tissue of ob/ob and dietary obese mice. Am J Physiol Endocrinol Metab 2007; 293: E1118–28.CrossRefPubMedGoogle Scholar
  61. 61.
    Trayhurn P, Wang B, Wood IS. Hypoxia in adipose tissue: a basis for the dysregulation of tissue function in obesity? Br J Nutr 2008; 100: 227–35.CrossRefPubMedGoogle Scholar
  62. 62.
    Trayhurn P. Hypoxia and adipose tissue function and dysfunction in obesity. Physiol Rev 2013; 93: 1–21.CrossRefPubMedGoogle Scholar
  63. 63.
    Rausch ME, Weisberg S, Vardhana P, Tortoriello DV. Obesity in C57BL/6J mice is characterized by adipose tissue hypoxia and cytotoxic T-cell infiltration. Int J Obes 2008; 32: 451–63.CrossRefGoogle Scholar
  64. 64.
    Rius J, Guma M, Schachtrup C, Akassoglou K, Zinkernagel AS, Nizet V, et al. NF-kappaB links innate immunity to the hypoxic response through transcriptional regulation of HIF-1alpha. Nature 2008; 453: 807–11.CrossRefPubMedPubMedCentralGoogle Scholar
  65. 65.
    Sun K, Kusminski CM, Scherer PE. Adipose tissue remodeling and obesity. J Clin Invest 2011; 121: 2094–101.CrossRefPubMedPubMedCentralGoogle Scholar
  66. 66.
    Skinner BM, Johnson EE. Nuclear morphologies: their diversity and functional relevance. Chromosoma 2017; 126: 195–212.CrossRefPubMedGoogle Scholar
  67. 67.
    Khan T, Muise ES, Iyengar P, et al. Metabolic dysregulation and adipose tissue fibrosis: role of collagen VI. Mol Cell Biol 2009; 29: 1575–91.CrossRefPubMedGoogle Scholar
  68. 68.
    Chun TH, Hotary KB, Sabeh F, Saltiel AR, Allen ED, Weiss SJ. A pericellular collagenase directs the 3-dimensional development of white adipose tissue. Cell 2006; 125: 577–9.CrossRefPubMedGoogle Scholar
  69. 69.
    Li Q, Hata A, Kosugi C, Kataoka N, Funaki M. The density of extracellular matrix proteins regulates inflammation and insulin signaling in adipocytes. FEBS Lett 2010; 584: 4145–50.CrossRefPubMedGoogle Scholar
  70. 70.
    Molofsky AB, Nussbaum JC, Liang HE, et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med 2013; 210: 535–49.CrossRefPubMedPubMedCentralGoogle Scholar
  71. 71.
    Lee MW, Odegaard JI, Mukundan L, et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell 2015; 160: 74–87.CrossRefPubMedGoogle Scholar
  72. 72.
    Odegaard JI, Ricardo-Gonzalez RR, Goforth MH, et al. Macrophage-specific PPARgamma controls alternative activation and improves insulin resistance. Nature 2007; 447: 1116–20.CrossRefPubMedPubMedCentralGoogle Scholar
  73. 73.
    Kang K, Reilly SM, Karabacak V, et al. Adipocyte-derived Th2 cytokines and myeloid PPARdelta regulate macrophage polarization and insulin sensitivity. Cell Metab 2008; 7: 485–95.CrossRefPubMedPubMedCentralGoogle Scholar
  74. 74.
    Fujisaka S, Usui I, Bukhari A, et al. Regulatory mechanisms for adipose tissueM1andM2macrophages in diet-induced obese mice. Diabetes 2009; 58: 2574–82.CrossRefPubMedPubMedCentralGoogle Scholar
  75. 75.
    Ruf W, Samad F. Tissue factor pathways linking obesity and inflammation. Hamostaseologie 2015; 35: 279–83.CrossRefPubMedPubMedCentralGoogle Scholar
  76. 76.
    Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AWJ. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003; 112: 1796–808.CrossRefPubMedPubMedCentralGoogle Scholar
  77. 77.
    Lumeng CN, Bodzin JL, Saltiel AR. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J Clin Invest 2007; 117: 175–84.CrossRefPubMedPubMedCentralGoogle Scholar
  78. 78.
    Zheng C, Yang Q, Cao J, et al. Local proliferation initiates macrophage accumulation in adipose tissue during obesity. Cell Death Dis 2016; 31: e2167.CrossRefGoogle Scholar
  79. 79.
    Tardelli M, Zeyda K, Moreno-Viedma V, et al. Osteopontin is a key player for local adipose tissue macrophage proliferation in obesity. Mol Metab 2016; 5: 1131–7.CrossRefPubMedPubMedCentralGoogle Scholar
  80. 80.
    Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocr 2016; 12: 15–28.CrossRefGoogle Scholar
  81. 81.
    Lesna IK, Cejkova S, Kralova A, et al. Human adipose tissue accumulation is associated with pro-inflammatory changes in subcutaneous rather than visceral adipose tissue. Nutr Diabetes 2017; 7: e264.CrossRefPubMedPubMedCentralGoogle Scholar
  82. 82.
    Kralova Lesna I, Kralova A, Cejkova S, et al. Characterisation and comparison of adipose tissue macrophages from human subcutaneous, visceral and perivascular adipose tissue. J Transl Med 2016; 14:208.CrossRefPubMedPubMedCentralGoogle Scholar
  83. 83.
    Odegaard JI, Ricardo-GonzalezRR, Red Eagle A, et al. Alternative M2 activation of Kupffer cells by PPARdelta ameliorates obesityinduced insulin resistance. Cell Metab 2008; 7: 496–507.CrossRefPubMedPubMedCentralGoogle Scholar
  84. 84.
    Xu X, Grijalva A, Skowronski A, van Eijk M, Serlie MJ, Ferrante AWJ. Obesity activates a program of lysosomal-dependent lipid metabolism in adipose tissue macrophages independently of classic activation. Cell Metab 2013; 18: 816–30.CrossRefPubMedPubMedCentralGoogle Scholar
  85. 85.
    Skinner AC, Steiner MJ, Henderson FW, Perrin EM. Multiple markers of inflammation and weight status: cross-sectional analyses throughout childhood. Pediatrics 2010; 125: e801–9.CrossRefPubMedPubMedCentralGoogle Scholar
  86. 86.
    Nijhuis J, Rensen SS, Slaats Y, van Dielen FM, Buurman WA, Greve JW. Neutrophil activation in morbid obesity, chronic activation of acute inflammation. Obesity 2009; 17: 2014–8.CrossRefPubMedGoogle Scholar
  87. 87.
    Asghar A, Sheikh N. Role of immune cells in obesity induced low grade inflammation and insulin resistance. Cell Immunol 2017; 315: 18–26.CrossRefPubMedPubMedCentralGoogle Scholar
  88. 88.
    Acosta JR, Douagi I, Andersson DP, et al. Increased fat cell size: a major phenotype of subcutaneous white adipose tissue in nonobese individuals with type 2 diabetes. Diabetologia 2016; 59: 560–70.CrossRefPubMedGoogle Scholar
  89. 89.
    Yang H, Youm YH, Vandanmagsar B, et al. Obesity increases the production of proinflammatory mediators from adipose tissue T cells and compromises TCR repertoire diversity: implications for systemic inflammation and insulin resistance. J Immunol 2010; 185: 1836–45.CrossRefPubMedPubMedCentralGoogle Scholar
  90. 90.
    Nishimura S, Manabe I, Nagasaki M, et al. CD8+ effector T cells contribute to macrophage recruitment and adipose tissue inflammation in obesity. Nat Med 2009; 15: 914–20.CrossRefPubMedGoogle Scholar
  91. 91.
    McLaughlin T, Liu LF, Lamendola C, et al. T-cell profile in adipose tissue is associated with insulin resistance and systemic inflammation in humans. Arterioscler Thromb Vasc Biol 2014; 34: 2637–43.CrossRefPubMedPubMedCentralGoogle Scholar
  92. 92.
    Fernández-Sánchez A, Madrigal-Santillán E, Bautista M, et al. Inflammation, oxidative stress and obesity. Int J Mol Sci 2011; 12: 3117–32.CrossRefPubMedPubMedCentralGoogle Scholar
  93. 93.
    Feuerer M, Herrero L, Cipolletta D, et al. Lean, but not obese, fat is enriched for a unique population of regulatory T cells that affect metabolic parameters. Nat Med 2009; 15: 930–9.CrossRefPubMedPubMedCentralGoogle Scholar
  94. 94.
    Winer S, Chan Y, Paltser G, et al. Normalization of obesityassociated insulin resistance through immunotherapy. Nat Med 2009; 15: 921–9.CrossRefPubMedPubMedCentralGoogle Scholar
  95. 95.
    Stentz FB, Kitabchi AE. Hyperglycemia-induced activation of human T-lymphocytes with de novo emergence of insulin receptors and generation of reactive oxygen species. Biochem Biophys Res Commun 2005; 335: 491–5.CrossRefPubMedGoogle Scholar
  96. 96.
    Martinez N, Vallerskog T, West K, et al. Chromatin decondensation and T cell hyperresponsiveness in diabetes-associated hyperglycemia. J Immunol 2014; 193: 4457–68.CrossRefPubMedPubMedCentralGoogle Scholar
  97. 97.
    Chen S, Feng B, George B, Chakrabarti R, Chen M, Chakrabarti S. Transcriptional coactivator p300 regulates glucose-induced gene expression in endothelial cells. Am J Physiol Endocrinol Metab 2010; 298: E127–37.CrossRefPubMedGoogle Scholar
  98. 98.
    Deb DK, Chen Y, Sun J, Wang Y, Li YC. ATP-citrate lyase is essential for high glucose-induced histone hyperacetylation and fibrogenic gene upregulation in mesangial cells. Am J Physiol Renal Physiol 2017; 313: F423–9.CrossRefPubMedGoogle Scholar
  99. 99.
    Haghikia A, Jörg S, Duscha A, et al. Dietary fatty acids directly impact central nervous system autoimmunity via the small intestine. Immunity 2015; 43: 817–29.CrossRefPubMedGoogle Scholar
  100. 100.
    Mauro C, Smith J, Cucchi D, et al. Obesity-induced metabolic stress leads to biased effector memory CD4+ T cell differentiation 1 PI3K p110δ-Akt-mediated signals. Cell Metab 2017; 25: 593–609.CrossRefPubMedPubMedCentralGoogle Scholar
  101. 101.
    Reynolds JM, Martinez GJ, Chung Y, Dong C. Toll-like receptor 4 signaling in T cells promotes autoimmune inflammation. Proc Natl Acad Sci U S A 2012; 109: 13064–9.CrossRefPubMedPubMedCentralGoogle Scholar
  102. 102.
    Bantug GR, Galluzzi L, Kroemer G, Hess C. The spectrum of T cell metabolism in health and disease. Nat Rev Immunol 2017; 18: 19–34.CrossRefPubMedGoogle Scholar
  103. 103.
    Anghel SI, Wahli W. Fat poetry: a kingdom for PPAR gamma. Cell Res 2007; 17: 486–511.CrossRefPubMedGoogle Scholar
  104. 104.
    Clark RB, Bishop-Bailey D, Estrada-Hernandez T, Hla T, Puddington L, Padula SJ. The nuclear receptor PPAR gamma and immunoregulation: PPAR gamma mediates inhibition of helper T cell responses. J Immunol 2000; 164: 1364–71.CrossRefPubMedGoogle Scholar
  105. 105.
    Cipolletta D, Feuerer M, Li A, et al. PPAR-γ is a major driver of the accumulation and phenotype of adipose tissue Treg cells. Nature 2012; 486: 549–53.CrossRefPubMedPubMedCentralGoogle Scholar
  106. 106.
    Duffaut C, Galitzky J, Lafontan M, Bouloumié A. Unexpected trafficking of immune cells within the adipose tissue during the onset of obesity. Biochem Biophys Res Commun 2009; 384: 482–5.CrossRefPubMedGoogle Scholar
  107. 107.
    Shen L, Chng MH, Alonso MN, Yuan R, Winer DA, Engleman EG. B-1a lymphocytes attenuate insulin resistance. Diabetes 2015; 64: 593–603.CrossRefPubMedGoogle Scholar
  108. 108.
    Deng T, Lyon CJ, Minze LJ, et al. Class II major histocompatibility complex plays an essential role in obesity-induced adipose inflammation. Cell Metab 2013; 17: 411–22.CrossRefPubMedPubMedCentralGoogle Scholar
  109. 109.
    Huh JY, Park J, Kim JI, Park YJ, Lee YK, Kim JB. Deletion of CD1d in adipocytes aggravates adipose tissue inflammation and insulin resistance in obesity. Diabetes 2017; 66: 835–47.CrossRefPubMedGoogle Scholar
  110. 110.
    Schmitz J, Evers N, Awazawa M, et al. Obesogenic memory can confer long-term increases in adipose tissue but not liver inflammation and insulin resistance after weight loss. Mol Metab 2016; 5: 328–39.CrossRefPubMedPubMedCentralGoogle Scholar
  111. 111.
    Zamarron BF, Mergian TA, Cho KW, et al. Macrophage proliferation sustains adipose tissue inflammation in formerly obese mice. Diabetes 2017; 66: 392–406.PubMedGoogle Scholar
  112. 112.
    Magkos F, Fraterrigo G, Yoshino J, et al. Effects of moderate and subsequent progressive weight loss on metabolic function and adipose tissue biology in humans with obesity. Cell Metab 2016; 23: 591–601.CrossRefPubMedPubMedCentralGoogle Scholar
  113. 113.
    Bradley D, Conte C, Mittendorfer B, et al. Gastric bypass and banding equally improve insulin sensitivity and β cell function. J Clin Invest 2012; 122: 4667–74.CrossRefPubMedPubMedCentralGoogle Scholar
  114. 114.
    Yu E, Ley SH, Manson JE, et al. Weight history and all-cause and cause-specific mortality in three prospective cohort studies. Ann Intern Med 2017; 166: 613–20.CrossRefPubMedPubMedCentralGoogle Scholar
  115. 115.
    Tchkonia T, Thomou T, Zhu Y, et al. Mechanisms and metabolic implications of regional differences among fat depots. Cell Metab 2013; 17: 644–56.CrossRefPubMedPubMedCentralGoogle Scholar
  116. 116.
    Chung S, Lapoint K, Martinez K, Kennedy A, Boysen Sandberg M, McIntosh MK. Preadipocytes mediate lipopolysaccharideinduced inflammation and insulin resistance in primary cultures of newly differentiated human adipocytes. Endocrinology 2006; 147: 5340–51.CrossRefPubMedGoogle Scholar
  117. 117.
    Saltiel AR. Insulin resistance in the defense against obesity. Cell Metab 2012; 15: 798–804.CrossRefPubMedGoogle Scholar
  118. 118.
    Nov O, Shapiro H, Ovadia H, et al. Interleukin-1β regulates fatliver crosstalk in obesity by auto-paracrine modulation of adipose tissue inflammation and expandability. PLoS One 2012; 8: e53626.CrossRefGoogle Scholar
  119. 119.
    Lu Q, Li M, Zou Y, Cao TT. Induction of adipocyte hyperplasia in subcutaneous fat depot alleviated type 2 diabetes symptoms in obese mice. Obesity 2014; 22: 1623–31.CrossRefPubMedGoogle Scholar
  120. 120.
    Arkan MC, Hevener AL, Greten FR, et al. IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med 2005; 11: 191–8.CrossRefPubMedPubMedCentralGoogle Scholar
  121. 121.
    Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature 2002; 420: 333–6.CrossRefPubMedGoogle Scholar
  122. 122.
    Li P, Oh D, Bandyopadhyay G, et al. LTB4 promotes insulin resistance in obese mice by acting on macrophages, hepatocytes and myocytes. Nat Med 2015; 21: 239–47.CrossRefPubMedPubMedCentralGoogle Scholar
  123. 123.
    Li P, Liu S, Lu M, et al. Hematopoietic-derived galectin-3 causes cellular and systemic insulin resistance. Cell 2016; 167: 973–84e12.CrossRefPubMedPubMedCentralGoogle Scholar
  124. 124.
    Shi H, Kokoeva MV, Inouye K, Tzameli I, Yin H, Flier JS. TLR4 links innate immunity and fatty acid-induced insulin resistance. J Clin Invest 2006; 116: 3015–25.CrossRefPubMedPubMedCentralGoogle Scholar
  125. 125.
    Himes RW, Smith CW. Tlr2 is critical for diet-induced metabolic syndrome in a murine model. FASEB J 2010; 24: 731–9.CrossRefPubMedPubMedCentralGoogle Scholar
  126. 126.
    Holland WL, Brozinick JT, Wang LP, et al. Inhibition of ceramide synthesis ameliorates glucocorticoid-, saturated-fat-and obesityinduced insulin resistance. Cell Metab 2007; 5: 167–79.CrossRefPubMedGoogle Scholar
  127. 127.
    Baker RG, Hayden MS, Ghosh S. NF-kB, inflammation and metabolic disease. Cell Metab 2011; 13: 11–22.CrossRefPubMedPubMedCentralGoogle Scholar
  128. 128.
    Zick Y. Ser/Thr phosphorylation of IRS proteins: a molecular basis for insulin resistance. Sci Signal Stransduct Knowl Environ 2005; 2005: pe4.Google Scholar
  129. 129.
    Winer DA, Luck H, Tsai S, Winer S. The intestinal immune system in obesity and insulin resistance. Cell Metab 2016; 23: 413–26.CrossRefPubMedGoogle Scholar
  130. 130.
    Arner P. Catecholamine-induced lipolysis in obesity. Int J Obes Relat Metab Disord 1999; 23: 10–3.CrossRefGoogle Scholar
  131. 131.
    Knight ZA, Hannan KS, Greenberg ML, Friedman JM. Hyperleptinemia is required for the development of leptin resistance. PLoS One 2010; 5: e11376.CrossRefPubMedPubMedCentralGoogle Scholar
  132. 132.
    Caro JF, Kolaczynski JW, Nyce MR, et al. Decreased cerebrospinal-fluid/serum leptin ratio in obesity: a possible mechanism for leptin resistance. Lancet 1996; 348: 159–61.CrossRefPubMedGoogle Scholar
  133. 133.
    Ozcan L, Ergin AS, Lu A, et al. Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metab 2009; 9: 35–51.CrossRefPubMedGoogle Scholar
  134. 134.
    Zhang X, Zhang G, Zhang H, Karin M, Bai H, Cai D. Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell 2008; 135: 61–73.CrossRefPubMedPubMedCentralGoogle Scholar
  135. 135.
    Collins S, Daniel KW, Petro AE, Surwit RS. Strain-specific response to beta 3-adrenergic receptor agonist treatment of dietinduced obesity in mice. Endocrinology 1997; 138: 405–13.CrossRefGoogle Scholar
  136. 136.
    Horowitz JF, Klein S. Whole body and abdominal lipolytic sensitivity to epinephrine is suppressed in upper body obese women. Am J Physiol Endocrinol Metab 2000; 278: E1144–52.CrossRefPubMedGoogle Scholar
  137. 137.
    Reynisdottir S, Ellerfeldt K, Wahrenberg H, Lithell H, Arner P. Multiple lipolysis defects in the insulin resistance (metabolic) syndrome. J Clin Invest 1994; 93: 2590–9.CrossRefPubMedPubMedCentralGoogle Scholar
  138. 138.
    Lowell BB, Bachman ES. Beta-adrenergic receptors, diet-induced thermogenesis, and obesity. J Biol Chem 2003; 278: 29385–8.CrossRefPubMedGoogle Scholar
  139. 139.
    Sakamoto T, Nitta T, Maruno K, et al. Macrophage infiltration into obese adipose tissues suppresses the induction of UCP1 level in mice. Am J Physiol Endocrinol Metab 2016; 310: E676–87.CrossRefPubMedGoogle Scholar
  140. 140.
    Guo T, Marmol P, Moliner A, et al. Adipocyte ALK7 links nutrient overload to catecholamine resistance in obesity. eLife 2014; 3: e03245.CrossRefPubMedPubMedCentralGoogle Scholar
  141. 141.
    Mowers J, Uhm M, Reilly S M, et al. Inflammation produces catecholamine resistance in obesity via activation of PDE3B by the protein kinases IKKε and TBK1. eLife 2013; 2: e01119.CrossRefPubMedPubMedCentralGoogle Scholar
  142. 142.
    Chiang SH, Bazuine M, Lumeng CN, et al. The protein kinase IKKepsilon regulates energy balance in obese mice. Cell 2009; 138: 961–75.CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© John Libbey Eurotext 2018

Authors and Affiliations

  • Jacek Karczewski
    • 1
    Email author
  • Ewelina Śledzińska
    • 2
  • Alina Baturo
    • 2
  • Izabela Jończyk
    • 3
  • Aleksander Maleszko
    • 3
  • Paweł Samborski
    • 2
  • Beata Begier-Krasińska
    • 4
  • Agnieszka Dobrowolska
    • 2
  1. 1.Department of Environmental Medicine/Department of Gastroenterology, Human Nutrition and Internal MedicinePoznan University of Medical SciencesPoznanPoland
  2. 2.Department of Gastroenterology, Human Nutrition and Internal MedicinePoznan University of Medical SciencesPoznanPoland
  3. 3.AI Centrum MedycznePoznanPoland
  4. 4.Department of Hypertensiology, Angiology and Internal MedicinePoznan University of Medical SciencesPoznanPoland

Personalised recommendations