European Cytokine Network

, Volume 29, Issue 3, pp 73–82 | Cite as

Cytokines and male infertility

  • Vassiliki SyriouEmail author
  • Dimitrios Papanikolaou
  • Ariadni Kozyraki
  • Dimitrios G. Goulis


Many male infertility cases have no apparent cause, being characterized as idiopathic. Both inflammation and obesity have long been associated with infertility. On one hand, inflammation, such as orchitis and male accessory gland infections (MAGIs), are regulated by inflammatory cytokines. The latter are also produced in the testis by Leydig and Sertoli cells, being associated with gap junctional communication at the blood–testis barrier. Furthermore, they regulate spermatogenesis through cell interaction, Toll-like receptors and production of reactive oxygen species. Additionally, they affect testosterone production, acting at many levels of the pituitary - gonadal axis. Any imbalance in their production may result in infertility. On the other hand, obesity has also been associated with infertility. Adipokines, cytokines produced by white adipose tissue, regulate the lipid and glucose metabolism and the inflammatory system. Recent data on leptin show that it regulates reproduction by adjusting hypothalamus - pituitary - gonadal axis at both the central and peripheral levels. In this regard, resistin, visfatin and the GH secretagogue peptic hormone ghrelin affect spermatogenesis, whereas data on adiponectin are rather scarce. In conclusion, inflammatory cytokines and adipokines seem to have a pivotal role in the regulation of spermatogenesis; any imbalance in this stable environment may lead to infertility. Nevertheless, further studies are needed to clarify their exact role.

Key words

cytokines male infertility inflammatory cytokines adipokines 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dinarello CA. Historical insights into cytokines. Eur J Immunol 2007; 37(1): 34–45.Google Scholar
  2. 2.
    Baker SJ, Rane SG, Reddy EP. Hematopoietic cytokine receptor signaling. Oncogene 2007; 26(47): 6724–37.Google Scholar
  3. 3.
    Zhang J-M, An J. Cytokines, inflammation and pain. Int Anesthesiol Clin 2007; 45(2): 27–37.Google Scholar
  4. 4.
    Kumar N, Singh A. Trends of male factor infertility, an important cause of infertility: a review of literature. J Hum Reprod Sci 2015; 8(4):191.Google Scholar
  5. 5.
    Poongothai J, Gopenath TS, Manonayaki S. Genetics of human male infertility. Singapore Med J 2009; 50(4): 336–47.Google Scholar
  6. 6.
    Loveland KL, Klein B, Pueschl D, et al. Cytokines in male fertility and reproductive pathologies: immunoregulation and beyond. Front Endocrinol 2017; 8:307.Google Scholar
  7. 7.
    Zhao S, Zhu W, Xue S, Han D. Testicular defense systems: immune privilege and innate immunity. Cell Mol Immunol 2014; 11(5): 428–37.Google Scholar
  8. 8.
    Tung KSK, Harakal J, Qiao H, et al. Egress of sperm autoantigen from seminiferous tubules maintains systemic tolerance. J Clin Invest 2017; 127(3): 1046–60.Google Scholar
  9. 9.
    Huleihel M, Lunenfeld E. Regulation of spermatogenesis by paracrine/autocrine testicular factors. Asian J Androl 2004; 6(3): 259–68.Google Scholar
  10. 10.
    Hedger MP. Testicular leukocytes: what are they doing? Rev Reprod 1997; 2: 38–47.Google Scholar
  11. 11.
    Maegawa M, Kamada M, Irahara M, et al. A repertoire of cytokines in human seminal plasma. J Reprod Immunol 2002; 54(1–2): 33–42.Google Scholar
  12. 12.
    Veräjäkorva E, Laato M, Pöllänen P. CD 99 and CD 106 (VCAM-1) in human testis. Asian J Androl 2002; 4(4): 243–8.Google Scholar
  13. 13.
    Cheng CY, Mruk DD. The blood-testis barrier and its implications for male contraception. Pharmacol Rev 2012; 64(1): 16–64.Google Scholar
  14. 14.
    Xia W, Mruk DD, Lee WM, Cheng CY. Cytokines and junction restructuring during spermatogenesis–A lesson to learn from the testis. Cytokine Growth Factor Rev 2005; 16(4–5): 469–93.Google Scholar
  15. 15.
    Yan HHN, Mruk DD, Lee WM, Cheng CY. Blood-testis barrier dynamics are regulated by testosterone and cytokines via their differential effects on the kinetics of protein endocytosis and recycling in Sertoli cells. FASEB J 2008; 22(6): 1945–59.Google Scholar
  16. 16.
    Lui WY, Cheng CY. Regulation of cell junction dynamics by cytokines in the testis–A molecular and biochemical perspective. Cytokine Growth Factor Rev 2007; 18(3–4): 299–311.Google Scholar
  17. 17.
    Oh YS, Jo NH, Park JK, Gye MC. Changes in inflammatory cytokines accompany deregulation of Claudin-11, resulting in inter-Sertoli tight junctions in varicocele rat testes. J Urol 2016; 196(4): 1303–12.Google Scholar
  18. 18.
    Chojnacka K, Bilinska B, Mruk DD. Interleukin 1 alpha-induced disruption of the Sertoli cell cytoskeleton affects gap junctional communication. Cell Signal 2016; 28(5): 469–80.Google Scholar
  19. 19.
    Veräjänkorva E, Martikainen M, Pöllänen P. Cytokines in the BALB/c mouse testis in various conditions. Asian J Androl 2001; 3(1): 9–19.Google Scholar
  20. 20.
    Basu S, Aballa TC, Ferrell SM, Lynne CM, Brackett NL. Inflammatory cytokine concentrations are elevated in seminal plasma of men with spinal cord injuries. J Androl 2004; 25(2): 250–4.Google Scholar
  21. 21.
    Kohchi C, Inagawa H, Nishizawa T, Soma GI. ROS and innate immunity. Anticancer Res 2009; 29(3): 817–22.Google Scholar
  22. 22.
    Goldman R, Ferber E, Zort U. Reactive oxygen species are involved in the activation of cellular phospholipase A2. FEBS Lett 1992; 309(2): 190–2.Google Scholar
  23. 23.
    Fraczek M, Kurpisz M. Inflammatory mediators exert toxic effects of oxidative stress on human spermatozoa. J Androl 2006; 28(2): 325–33.Google Scholar
  24. 24.
    Depuydt E, Comhaire H. The relation between reactive oxygen species and cytokines in andrological patients with or without male accessory gland infection. J Androl 1996; 17(6): 699–707.Google Scholar
  25. 25.
    Ishikawa T, Fujioka H, Ishimura T, Takenaka A, Fujisawa M. Increased testicular 8-hydroxy-2′-deoxyguanosine in patients with varicocele. BJU Int 2007; 100(4): 863–6.Google Scholar
  26. 26.
    Sakamoto Y, Ishikawa T, Kondo Y, Yamaguchi K, Fujisawa M. The assessment of oxidative stress in infertile patients with varicocele. BJU Int 2008; 101(12): 1547–52.Google Scholar
  27. 27.
    Schuppe H-C, Meinhardt A, Allam JP, Bergmann M, Weidner W, Haidl G. Chronic orchitis: a neglected cause of male infertility? Andrologia 2008; 40(2): 84–91.Google Scholar
  28. 28.
    Jacobo P, Guazzone VA, Theas MS, Lustig L. Testicular autoimmunity. Autoimmun Rev 2011; 10(4): 201–4.Google Scholar
  29. 29.
    Fujita Y, Mihara T, Okazaki T, Shitanaka M, Kushino R, Ikeda C, et al. Toll-like receptors (TLR) 2 and 4 on human sperm recognize bacterial endotoxins and mediate apoptosis. Hum Reprod 2011; 26(10): 2799–806.Google Scholar
  30. 30.
    Wu H, Shi L, Wang Q, et al. Mumps virus-induced innate immune responses in mouse Sertoli and Leydig cells. Sci Rep 2016; 6(1): 19507.Google Scholar
  31. 31.
    Hedger MP. Toll-like receptors and signalling in spermatogenesis and testicular responses to inflammation–a perspective. J Reprod Immunol 2011; 88(2): 130–41.Google Scholar
  32. 32.
    Dousset B, Hussenet F, Daudin M, Bujan L, Foliguet B, Nabet P. Seminal cytokine concentrations (IL-1α, IL-2, IL-6, sR IL-2, sR IL-6), semen parameters and blood hormonal status in male infertility. Hum Reprod 1997; 12(7): 1476–9.Google Scholar
  33. 33.
    Comhaire F, Mahmoud A, Depuydt C, Zalata A, Christophe A. Mechanisms and effects of male genital tract infection on sperm quality and fertilizing potential: the andrologist’s viewpoint. Hum Reprod Update 1999; 5(5): 393–8.Google Scholar
  34. 34.
    Björndahl L, Giwercman A, Tournaye H, Weidner W. Clinical andrology–EAU/ESAUcourse guidelines. United States: CRC Press, 2010.Google Scholar
  35. 35.
    Heidargholizadeh S, Aydos SE, Yukselten Y, Ozkavukcu S, Sunguroglu A, Aydos K. Adifferential cytokine expression profile before and after rFSH treatment in Sertoli cell cultures of men with nonobstructive azoospermia. Andrologia 2017; 49(4): e12647.Google Scholar
  36. 36.
    Lotti F, Corona G, Mondaini N, et al. Seminal, clinical and colour-Doppler ultrasound correlations of prostatitis-like symptoms in males of infertile couples. Andrology 2014; 2(1): 30–41.Google Scholar
  37. 37.
    An LF, Zhang XH, Sun XT, Zhao LH, Li S, Wang WH. Unexplained infertility patients have increased serum IL-2, IL-4, IL-6, IL-8, IL-21, TNFα, IFNγ and increased Tfh/CD4T cell ratio: Increased Tfh and IL-21 strongly correlate with presence of autoantibodies. Immunol Invest 2015; 44(2): 164–73.Google Scholar
  38. 38.
    Alsaimary IEA. Evaluation of serum levels of pro-inflammatory cytokines (interleukins 2, 6, 8) in fertile and infertile men. Donnish J Microbiol Biotechnol Res 2014; 1(2): 23–34.Google Scholar
  39. 39.
    Havrylyuk A, Chopyak V, Boyko Y, Kril I, Kurpisz M. Cytokines in the blood and semen of infertile patients. Cent Eur J Immunol 2015; 3(3): 337–44.Google Scholar
  40. 40.
    Fan W, Xu Y, Liu Y, Zhang Z, Lu L, Ding Z. Obesity or overweight, a chronic inflammatory status in male reproductive system, leads to mice and human subfertility. Front Physiol 2017; 8: 1117.Google Scholar
  41. 41.
    Mealy K, Robinson B, Millette CF, Majzoub J, Wilmore DW. The testicular effects of tumor necrosis factor. Ann Surg 1990; 211: 470–5.Google Scholar
  42. 42.
    van der Poll T, Romijn JA, Endert E, Sauerwein HP. Effects of tumor necrosis factor on the hypothalamic-pituitary-testicular axis in healthy men. Metabolism 1993; 42(3): 303–7.Google Scholar
  43. 43.
    Hong CY, Park JH, Ahn RS, et al. Molecular mechanism of suppression of testicular steroidogenesis by proinflammatory cytokine tumor necrosis factor alpha. Mol Cell Biol 2004; 24(7): 2593–604.Google Scholar
  44. 44.
    Sadasivam M, Ramatchandirin B, Balakrishnan S, Prahalathan C. TNF-α-mediated suppression of Leydig cell steroidogenesis involves DAX-1. Inflamm Res 2015; 64(7): 549–56.Google Scholar
  45. 45.
    Fossiez F. T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 1996; 183(6): 2593–603.Google Scholar
  46. 46.
    Li Qian. The relationship between IL-17 and male infertility: semen analysis. African J Microbiol Res 2012; 6(27): 5672–7.Google Scholar
  47. 47.
    Akira S. The role of IL-18 in innate immunity. Curr Opin Immunol 2000; 12(1): 59–63.Google Scholar
  48. 48.
    Dinarello CA. Interleukin-18, a proinflammatory cytokine. Eur Cytokine Netw 2000; 11(3): 483–6.Google Scholar
  49. 49.
    Komsky A, Huleihel M, Ganaiem M, et al. Presence of IL-18 in testicular tissue of fertile and infertile men. Andrologia 2012; 44(1): 1–8.Google Scholar
  50. 50.
    Matalliotakis IM, Cakmak H, Fragouli Y, Kourtis A, Arici A, Huszar G. Increased IL-18 levels in seminal plasma of infertile men with genital tract infections. Am J Reprod Immunol 2006; 55(6): 428–33.Google Scholar
  51. 51.
    Fraczek M, Hryhorowicz M, Gill K, et al. The effect of bacteriospermia and leukocytospermia on conventional and nonconventional semen parameters in healthy young normozoospermic males. J Reprod Immunol 2016; 118: 18–27.Google Scholar
  52. 52.
    Maggio M, Basaria S, Ceda GP, et al. The relationship between testosterone and molecular markers of inflammation in older men. J Endocrinol Invest 2005; 28(11): 116–9.Google Scholar
  53. 53.
    Hu L, Mauro TM, Dang E, et al. Epidermal dysfunction leads to an age-associated increase in levels of serum inflammatory cytokines. J Invest Dermatol 2017; 137(6): 1277–85.Google Scholar
  54. 54.
    Cauley JA, Barbour KE, Harrison SL, et al. Inflammatory markers and the risk of hip and vertebral fractures in men: the osteoporotic fractures in men (MrOS). J Bone Miner Res 2016; 31(12): 2129–38.Google Scholar
  55. 55.
    Matsui Y. Pathological state or cause of sarcopenia. Clin Calcium 2017; 27(1): 45–52.Google Scholar
  56. 56.
    Maggio M, Blackford A, Taub D, et al. Circulating inflammatory cytokine expression in men with prostate cancer undergoing androgen deprivation therapy. J Androl 2006; 27(6): 725–8.Google Scholar
  57. 57.
    Bobjer J, Katrinaki M, Tsatsanis C, Lundberg Giwercman Y, Giwercman A. Negative association between testosterone concentration and inflammatory markers in young men: a nested cross-sectional study. PLoS One 2013; 8(4): 2–9.Google Scholar
  58. 58.
    Veldhuis J, Yang R, Roelfsema F, Takahashi P. Proinflammatory cytokine infusion attenuates lh’s feedforward on testosterone secretion: modulation by age. J Clin Endocrinol Metab 2016; 101(2): 539–49.Google Scholar
  59. 59.
    McLennan IS, Pankhurst MW. Anti-Müllerian hormone is a gonadal cytokine with two circulating forms and cryptic actions. J Endocrinol 2015; 226(3): R45–57.Google Scholar
  60. 60.
    Wijayarathna R, de Kretser DM. Activins in reproductive biology and beyond. Hum Reprod Update 2016; 22(3): 342–57.Google Scholar
  61. 61.
    Shukla KK, Chambial S, Dwivedi S, Misra S, Sharma P. Recent scenario of obesity and male fertility. Andrology 2014; 2(6): 809–18.Google Scholar
  62. 62.
    Bekaert M, Van Nieuwenhove Y, Calders P, et al. Determinants of testosterone levels in human male obesity. Endocrine 2015; 50(1): 202–11.Google Scholar
  63. 63.
    Tsatsanis C, Dermitzaki E, Avgoustinaki P, Malliaraki N, Mytaras V, Margioris AN. The impact of adipose tissue-derived factors on the hypothalamic-pituitary-gonadal (HPG) axis. Hormones 2015; 14(4): 549–62.Google Scholar
  64. 64.
    Palmer NO, Bakos HW, Fullston T, Lane M. Impact of obesity on male fertility, sperm function and molecular composition. Spermatogenesis 2012; 2(4): 253–63.Google Scholar
  65. 65.
    Du Plessis SS, Cabler S, McAlister DA, Sabanegh E, Agarwal A. The effect of obesity on sperm disorders and male infertility. Nat Rev Urol 2010; 7(3): 153–61.Google Scholar
  66. 66.
    Schulte DM, Hahn M, Oberhauser F, et al. Caloric restriction increases serum testosterone concentrations in obese male subjects by two distinct mechanisms. Horm Metab Res 2014; 46(4): 283–6.Google Scholar
  67. 67.
    Galic S, Oakhill JS, Steinberg GR. Adipose tissue as an endocrine organ. Mol Cell Endocrinol 2010; 316(2): 129–39.Google Scholar
  68. 68.
    van den Berg SM, van Dam AD, Rensen PCN, de Winther MPJ, Lutgens E. Immune modulation of brown(ing) adipose tissue in obesity. Endocr Rev 2017; 38(1): 46–68.Google Scholar
  69. 69.
    Odle AK, Haney A, Allensworth-James M, Akhter N, Childs GV. Adipocyte versus pituitary leptin in the regulation of pituitary hormones: Somatotropes develop normally in the absence of circulating leptin. Endocrinology 2014; 155(11): 4316–28.Google Scholar
  70. 70.
    Budak E, Fernández Sánchez M, Bellver J, Cerveró A, Simón C, Pellicer A. Interactions of the hormones leptin, ghrelin, adiponectin, resistin and PYY3-36 with the reproductive system. Fertil Steril 2006; 85(6): 1563–81.Google Scholar
  71. 71.
    Kawwass JF, Summer R, Kallen CB. Direct effects of leptin and adiponectin on peripheral reproductive tissues: a critical review. Mol Hum Reprod 2015; 21(8): 617–32.Google Scholar
  72. 72.
    Min X, Lemon B, Tang J, et al. Crystal structure of a singlechain trimer of human adiponectin globular domain. FEBS Lett 2012; 586(6): 912–7.Google Scholar
  73. 73.
    Roumaud P, Martin LJ. Roles of leptin, adiponectin and resistin in the transcriptional regulation of steroidogenic genes contributing to decreased Leydig cells function in obesity. Horm Mol Biol Clin Investig 2015; 24(1): 25–45.Google Scholar
  74. 74.
    Rak A, Mellouk N, Froment P, Dupont J. Adiponectin and resistin: potential metabolic signals affecting hypothalamo-pituitary gonadal axis in females and males of different species. Reproduction 2017; 153(6): 215–26.Google Scholar
  75. 75.
    Shehzad A, Iqbal W, Shehzad O, Lee YS. Adiponectin: regulation of its production and its role in human diseases. Hormones (Athens) 2012; 11(1): 8–20.Google Scholar
  76. 76.
    Wu L, Xu B, Fan W, Zhu X, Wang G, Zhang A. Adiponectin protects Leydig cells against proinflammatory cytokines by suppressing the nuclear factor-kB signaling pathway. FEBS J 2013; 280(16): 3920–7.Google Scholar
  77. 77.
    Elfassy Y, Bastard J-P, McAvoy C, Fellahi S, Dupont J, Levy R. Adipokines in semen: physiopathology and effects on spermatozoas. Int J Endocrinol 2018; 2018: 1–11.Google Scholar
  78. 78.
    Elfassy Y, McAvoy C, Fellahi S, et al. Seminal plasma adipokines: involvement in human reproductive functions. Eur Cytokine Netw 2017; 28(4): 141–50.Google Scholar
  79. 79.
    Moretti E, Collodel G, Mazzi L, Campagna M, Iacoponi F, Figura N. Resistin, interleukin-6, tumor necrosis factor-alpha, and human semen parameters in the presence of leukocytospermia, smoking habit and varicocele. Fertil Steril 2014; 102(2): 354–60.Google Scholar
  80. 80.
    Campos DB, Palin M-F, Bordignon V, Murphy BD. The “beneficial” adipokines in reproduction and fertility. Int J Obes (Lond) 2008; 32(2): 223–31.Google Scholar
  81. 81.
    Thomas S, Kratzsch D, Schaab M, et al. Seminal plasma adipokine levels are correlated with functional characteristics of spermatozoa. Fertil Steril 2013; 99(5): 1256–1263.e3.Google Scholar
  82. 82.
    Pagotto U, Gambineri A, Pelusi C, et al. Testosterone replacement therapy restores normal ghrelin in hypogonadal men. J Clin Endocrinol Metab 2003; 88(9): 4139–43.Google Scholar

Copyright information

© John Libbey Eurotext 2018

Authors and Affiliations

  • Vassiliki Syriou
    • 1
    Email author
  • Dimitrios Papanikolaou
    • 2
    • 3
  • Ariadni Kozyraki
    • 3
    • 4
  • Dimitrios G. Goulis
    • 3
  1. 1.Endocrinology Clinic“Elpis” General Hospital of AthensAmpelokipi, AthensGreece
  2. 2.Second Department of Urology, Medical SchoolAristotle University of Thessaloniki, Greece. “Papageorgiou General Hospital”ThessalonikiGreece
  3. 3.Unit of Reproductive Endocrinology, First Department of Obstetrics and Gynecology, Medical SchoolAristotle University of Thessaloniki, Greece. “Papageorgiou General Hospital”ThessalonikiGreece
  4. 4.Endocrinology Clinic of Klinikum Dortmund, Germany. Klinik Dortmund Endokrinology, DiabetologyDortmundGermany

Personalised recommendations