Skip to main content
Log in

Periphyton nutrient limitation and nitrogen fixation potential along a wetland nutrient-depletion gradient

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

While intensified nutrient limitation of periphyton has been reported along wetland nutrientdepletion gradients, changes to the specific nutrient that limits periphyton growth are not documented. In this study, we used artificial nutrient-diffusing substrata to determine nutrient limitation status of periphyton along a nitrogen- and phosphorus-depletion gradient in a freshwater marsh during the growing season of 2003. We also characterized water-column nutrient content, N:P ratio of dissolved nutrients, and periphytic N2 fixation potential along the gradient. Dissolved inorganic nitrogen concentrations consistently decreased (60%–95%) from inflow to outflow during all bioassays, while soluble reactive phosphorus concentrations decreased during the April (49%) and September (39%) bioassays but increased in the July bioassay (51%). Unequal N and P retention resulted in a general decrease in DIN:SRP mass ratio from 20.2 ± 5.0 to 3.8 ± 1.6 between inflow and outflow, respectively. Periphyton at the wetland inflow never responded to N additions alone, while periphyton at the outflow always responded to N enrichment. Periphyton at the inflow were either not limited by nutrients (September) or co-limited by N+P (April and July). At the outflow, periphyton were either N-limited (April and September) or strongly co-limited by N+P (July). A significant increase in N2 fixation potential (p<0.05) from inflow to outflow locations was noted for all measured events. Our results suggest that, in addition to the severity of nutrient limitation, some wetlands may display spatial heterogeneity in the specific nutrient that limits periphyton growth. Further, these shifts influence the structure and function of wetland periphyton assemblages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • APHA, American Public Health Association. 1998. Standard Methods for the Analysis of Water and Wastewater, 20th Edition. APHA and Water Environment Federation, Washington, DC, USA.

    Google Scholar 

  • Borchardt, M. A. 1996. Nutrients p. 183–227.In R. J. Stevenson, M. L. Bothwell, and R. L. Lowe (eds.) Algal Ecology: Freshwater Benthic Ecosytems. Academic Press, New York, NY, USA.

    Google Scholar 

  • Bowden, W. B. 1987. The biogeochemistry of nitrogen in freshwater wetlands. Biogeochemistry 4:313–348.

    Article  CAS  Google Scholar 

  • Doyle, R. D. and T. R. Fisher. 1994. Nitrogen fixation by periphyton and plankton on the Amazon floodplain at Lake Calado. Biogeochemistry 26:41–66.

    Article  Google Scholar 

  • Fairchild, G. W., R. L. Lowe, and W. B. Richardson. 1985. Algal periphyton growth on nutrient-diffusing substrates: an in situ bioassay. Ecology 66:465–472.

    Article  CAS  Google Scholar 

  • Flett, R. J., R. D. Hamilton, and N. E. R. Campbell. 1976. Aquatic acetylene reduction techniques: solutions to several problems. Canadian Journal of Microbiology 22:43–51.

    Article  CAS  PubMed  Google Scholar 

  • Goldsborough, L. G. and G. G. C. Robinson. 1996. Patterns in wetlands. p. 77–117.In R. J. Stevenson, M. L. Bothwell, and R. L. Lowe (eds.). Algal Ecology: Freshwater Benthic Ecosystems. Academic Press, New York, NY, USA.

    Google Scholar 

  • Havens, K. E., T. L. East, A. J. Rodusky, and B. Sharfstein. 1999. Littoral periphyton responses to nitrogen and phosphorus: and experimental study in a subtropical lake. Aquatic Botany 63:267–290.

    Article  Google Scholar 

  • Inglett, P. W., K. R. Reddy, and P. V. McCormick 2004. Periphyton chemistry and nitrogenase activity in a northern Everglades ecosystem. Biogeochemistry 67:213–233.

    Article  CAS  Google Scholar 

  • Kadlec, R. H. and R. L. Knight. 1996. Treatment Wetlands. Lewis Publishers, CRC Press LLC, Boca Raton, FL, USA.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 1999. Bacillariophyceae: Bacillariaceae, Epithemiaceae, Surirellaceae. Volume 2.In H. Ettl, J. Gerloff, H. Heynig, and D. Mollenhauer (eds.) Süßwasserflora von Mitteleuropa, Band 2/2. Spektrum Akademischer Verlag, Heidelberg, Germany.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 2000. Bacillariophyceae: English and French Translation of the Keys. Volume 5In B. Büdel G. Gärtner, L. Krienitz, and G. M. Lokhorst (eds.) Süßwasserflora von Mitteleuropa, Band 2/5. Spektrum Akademischer Verlag, Heidelberg, Germany.

    Google Scholar 

  • Levine, S. N. and D. W. Schindler. 1999. Influence of nitrogen to phosphorus supply ratios and physicochemical conditions on cyanobacteria and phytoplankton species composition in the Experimental Lakes Area, Canada. Canadian Journal of Fisheries and Aquatic Science 56:451–466.

    Article  Google Scholar 

  • Lowe, R. L., B. H. Rosen, and G. W. Fairchild. 1984. Endosymbiotic blue-green algae in freshwater diatoms: and advantage in nitrogen poor habitats. Journal of Phycology 20:24.

    Google Scholar 

  • Matlock, M. D., M. E. Matlock, D. E. Storm, M. D. Smolen, and W. J. Henley. 1998. Limiting nutrient determination in lotic ecosystems using a quantitative nutrient enrichment periphytometer. Journal of the American Water Resources Association 34:1141–1147.

    Article  CAS  Google Scholar 

  • Matlock, M. D., D. E. Storm, M. D. Smolen, M. E. Matlock, A. M. S. McFarland, and L. M. Hauck. 1999. Development and application of a lotic ecosystem trophic status index. Transactions of the American Society of Agricultural Engineers 42:651–656.

    Google Scholar 

  • Mayer, P. M. and S. M. Galatowitsch. 2001. Assessing ecosystem integrity of restored prairie wetlands from species production-diversity relationships. Hydrobiologia 443:177–185.

    Article  Google Scholar 

  • McCormick, P. V., M. B. O'Dell, R. B. E. Shuford III, J. G. Backus, and W. C. Kennedy. 2001. Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquatic Botany 71:119–139.

    Article  CAS  Google Scholar 

  • McCormick, P. V., P. S. Rawlik, K. Lurding, E. P. Smith, and F. H. Sklar. 1996. Periphyton-water quality relationships along a nutrient gradient in the northern Florida Everglades. Journal of the North American Benthological Society 15:433–449.

    Article  Google Scholar 

  • McCormick, P. V., R. B. E. Shuford III, J. G. Backus, and W. C. Kennedy 1998. Spatial and seasonal patterns of periphyton biomass and productivity in the northern Florida Everglades. Hydrobiologia 362:185–208.

    Article  Google Scholar 

  • McDougal, R. L., L. G. Goldsborough, and B. J. Hann. 1997. Responses of a prairie wetland to press and pulse additions of in organic nitrogen and phosphorus: production by planktonic and benthic algae. Archiv für Hydrobiologie 140:145–167.

    CAS  Google Scholar 

  • McFarland, A. M. S., and L. Hauck. 1999. Existing nutrient sources and contributions to the Bosque River Watershed. Texas Institute for Applied Environmental Research, Tarleton State University, Stephenville, TX, USA. PR9911.

    Google Scholar 

  • Olde Venterink, H. R. E. van der Vliet, and M. J. Wassen. 2001. Nutrient limitation along a productivity gradient in wet meadows. Plant and Soil 234:171–179.

    Article  CAS  Google Scholar 

  • Poe, A. C., M. F. Piehler, S. P. Thompson, and H. W. Paerl 2003. Denitrification in a constructed wetland receiving agricultural run-off. Wetlands 23:817–826.

    Article  Google Scholar 

  • Richardson, C. J., G. M. Ferrell, and P. Vaithiyanathan. 1999. Nutrient effects on stand structure, resorption efficiency, and secondary compounds in Everglades sawgrass. Ecology 80:2182–2192.

    Google Scholar 

  • Richardson, C. J. and S. S. Qian. 1999. Long-term phosphorus assimilative capacity in freshwater wetlands: A new paradigm for sustaining ecosystem structure and function. Environmental Science and Technology 33:1545–1551.

    Article  CAS  Google Scholar 

  • Rodusky, A. J., A. D. Steinmann, T. L. East, B. Sharfstein, and R. M. Meeker. 2001. Periphyton nutrient limitation and other potential growth-controlling factors in Lake Okeechobee, USA. Hydrobiologia 448:27–39.

    Article  CAS  Google Scholar 

  • Round, F. E., R. M. Crawford, and D. G. Mann. 1990. The Diatoms; Biology and Morphology on the Genera. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • SAS Institute Inc. 1999 SAS/STAT® User's Guide, Version 8. Cary, NC, USA.

  • Tank, J. L. and W. K. Dodds. 2003. Nutrient limitation of epilithic and epixylic biofilms in 10 North American streams. Freshwater Biology 48:1031–1049.

    Article  CAS  Google Scholar 

  • Toetz, D. 1995. Water chemistry and periphyton in an alpine wetland. Hydrobiologia 312:93–105.

    CAS  Google Scholar 

  • Turner, A. M., J. C. Trexler, C. F. Jordan, S. J. Slack, P. Geddes, J. H. Chick, and W. F. Lotus. 1999. Targeting ecosystem features for conservation: standing crops in the Florida Everglades. Conservation Biology 13:898–911.

    Article  Google Scholar 

  • Tyler, A. C., T. A. Mastronicola, and K. J. McGlathery. 2003. Nitrogen fixation and nitrogen limitation of primary production along a natural marsh chronosequence. Oecologia 136:431–438.

    Article  PubMed  Google Scholar 

  • Vaithiyanathan, P. and C. J. Richardson. 1997. Nutrient profiles in the everglades: examination along the eutrophication gradient. The Science of the Total Environment 205:81–95.

    Article  CAS  PubMed  Google Scholar 

  • Vaithiyanathan, P. and C. J. Richardson. 1999. Macrophyte species changes in the Everglades: Examination along a eutrophication gradient. Journal of Environmental Quality 28:1347–1358.

    CAS  Google Scholar 

  • Vymazal, J. 1995. Algae and Element Cycling in Wetlands. CRC Press, Boca Raton, FL, USA.

    Google Scholar 

  • Vymazal, J. and C. J. Richardson. 1995. Species composition, biomass, and nutrient content of periphyton in the Florida Everglades. Journal of Phycology 31:343–354.

    Article  Google Scholar 

  • Wehr, J. D. and R. G. Sheath (eds.). 2003. Freshwater Algae of North America: Ecology and Classification. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Wetzel, R. G. 2001. Limnology: Lake and River Ecosystems 3rd Edition. Academic Press, San Diego, CA, USA.

    Google Scholar 

  • Wetzel, R. G. and G. E. Likens. 2000. Limnological Analyses 3rd Edition. Springer-Verlag, New York, NY, USA.

    Google Scholar 

  • Wu, X and W. J. Mitsch. 1998. Spatial and temporal patterns of algae in newly constructed freshwater wetlands. Wetlands 18:9–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Scott, J.T., Doyle, R.D. & Filstrup, C.T. Periphyton nutrient limitation and nitrogen fixation potential along a wetland nutrient-depletion gradient. Wetlands 25, 439–448 (2005). https://doi.org/10.1672/18

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/18

Key Words

Navigation