Skip to main content
Log in

Polysaccharide addition effects on rhizosphere nitrogen fixation rates of the California cordgrass,Spartina foliosa

  • Note
  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Low nutrient availability in salt marsh ecosystems can potentially limit primary productivity and subsequent carbon export to coastal waters. In temperate marshes with low external nitrogen inputs, nitrogen (N2) fixation may enhance availability of usable nitrogen to marsh plant communities and increase their growth. The effects of sub-surface soil amendment of polysaccharides on rhizosphere N2 fixation, and on plant growth and tissue characteristics of the California cordgrass,Spartina foliosa, were tested in microcosms in a tidal simulator. Polysaccharide was added as alginate extract, and rhizosphere N2 fixation and plant characteristics were measured over 9 weeks. N2 fixation rates increased 10-fold in the alginate treatment compared to controls after 1 week of exposure as a result of increased availability of a readily usable form of carbon. N2 fixation rates in amended sediment were significantly higher than rates in control sediments at weeks 1 and 3. Although plant characteristics did not differ between treatments, trends of increased number of leaves and shoots in amended plants compared to controls appeared between weeks 7 and 9. The potential for increased plant growth following an increase in N2 fixation rates warrants further investigation as it may have implications for recovery of N-limited disturbed and restored salt marshes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Benner, R., S. Y. Newell, A. E. Maccubbin, and R. E. Hodson. 1984. Relative contributions of bacteria and fungi to rates of degradation of lignocellulose detritus in salt-marsh sediments. Applied Environmental Microbiology 48: 36–40.

    CAS  Google Scholar 

  • Boyer, K. E. and J. B. Zedler. 1998. Effects of nitrogen additions on the vertical structure of a constructed cordgrass marsh. Ecological Applications 8: 692–705.

    Article  Google Scholar 

  • Boyer, K. E. and J. B. Zedler. 1999. Nitrogen addition could shift plant community composition in a restored California salt marsh. Restoration Ecology 7: 74–85.

    Article  Google Scholar 

  • Boyer, K. E., J. C. Callaway, and J. B. Zedler. 2000. Evaluating the progress of restored cordgrass (Spartina foliosa) marshes: belowground biomass and tissue nitrogen. Estuaries 23: 711–21.

    Article  CAS  Google Scholar 

  • Burke, D. J., E. P. Hamerlynck, and D. Hahn. 2002. Interactions among plant species and microorganisms in salt marsh sediments. Applied Environmental Microbiology 68: 1157–64.

    Article  CAS  Google Scholar 

  • Capone, D. G. 1983. N2 fixation in seagrass communities. Marine Technology Society Journal 17: 32–37.

    Google Scholar 

  • Capone, D. G. 1993. Determination of nitrogenase activity in aquatic samples using the acetylene reduction procedure. p. 621–631.In P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole (eds.) Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL, USA.

    Google Scholar 

  • Craft, C. B., S. W. Broome, and E. D. Seneca. 1988. Nitrogen, phosphorus and organic carbon pools in natural and trans-planted marsh soils. Estuaries 11: 272–80.

    Article  CAS  Google Scholar 

  • Craft, C., J. Reader, J. N. Sacco, and S. W. Broome. 1999. Twenty-five years of ecosystem development of constructedSpartina alterniflora (Loisel) marshes. Ecological Applications 9: 1405–19.

    Article  Google Scholar 

  • Currin, C. A., S. B. Joye, and H. W. Paerl. 1996. Diel rates of N-2-fixation and denitrification in a transplantedSpartina alterniflora marsh: implications for N-flux dynamics. Estuarine, Coastal and Shelf Science 42: 597–616.

    Article  CAS  Google Scholar 

  • Dakora, F. D. and B. G. Drake. 2000. Elevated CO2 stimulates associative N2 fixation in a C3 plant of the Chesapeake Bay wetland. Plant, Cell, and Environment 23: 943–53.

    Article  CAS  Google Scholar 

  • Gibson, K. D., J. B. Zedler, and R. Langis. 1994. Limited response of cordgrass (Spartina foliosa) to soil amendments in a constructed salt marsh. Ecological Applications 4: 757–67.

    Article  Google Scholar 

  • Hamner, K. and H. Kirchmann. 2005. Net nitrogen immobilization in soil induced by small additions of energy sources. Acta Agriculturae Scandinavia Section B-Soil and Plant 55: 177–85.

    Article  CAS  Google Scholar 

  • Hines, J., P. Megonigal, and R. F. Denno. 2006. Nutrient subsidies to belowground microbes impact aboveground food web interactions. Ecology 87: 1542–55.

    Article  PubMed  Google Scholar 

  • Kemp, A. L. W. and A. Mudrochova. 1972. Distribution and forms of nitrogen in a Lake Ontario sediment core. Limnology and Oceanography 17: 855–67.

    CAS  Google Scholar 

  • Ladha, J. K., A. Tirol-Padre, M. L. G. Daroy, G. Punzalan, and I. Watanabe. 1987. The effects on N2 fixation (C2H2 reduction), bacterial population and rice plant growth of two modes of straw application to a wetland rice field. Biology and Fertility of Soils 5: 106–11.

    Article  Google Scholar 

  • Langis, R., M. Zalejko, and J. B. Zedler. 1991. Nitrogen assessments in a constructed and natural salt marsh of San Diego Bay. Ecological Applications 1: 40–51.

    Article  Google Scholar 

  • Lindau, C. W. and L. R. Hossner. 1981. Substrate characterization of an experimental marsh and three natural marshes. Soil Science Society of America Journal 45: 1171–76.

    CAS  Google Scholar 

  • Lindig-Cisneros, R., J. Desmond, K. E. Boyer, and J. B. Zedler. 2003. Wetland restoration thresholds: can a degradation transition be reversed with increased effort? Ecological Applications 13: 193–205.

    Article  Google Scholar 

  • Liu, J.-K., F.-T. Lee, C.-S. Lin, X.-T. Yao, J. W. Davenport, and T.-Y. Wong. 1995. Alternative function of the electron transport system inAzotobacter vinelandii: removal of excess reductant by the cytochromed pathway. Applied Environmental Microbiology 61: 3998–4003.

    CAS  Google Scholar 

  • Macdonald, B. C. T., J. Smith, A. F. Keene, M. Tunks, A. Kinsela, and I. White. 2004. Impacts of runoff from sulfuric soils on sediment chemistry in an estuarine lake. Science of the Total Environment 329: 115–30.

    Article  CAS  PubMed  Google Scholar 

  • McGlathery, K. J., N. Risgaard-Peterson, and P. B. Christensen. 1998. Temporal and spatial variation in nitrogen fixation activity in the eelgrassZostera marina rhizosphere. Marine Ecology Progress Series 168: 245–58.

    Article  CAS  Google Scholar 

  • Morgan, P. A. and F. T. Short. 2002. Using functional trajectories to track constructed salt marsh development in the Great Bay Estuary, Maine/New Hampshire, U.S.A. Restoration Ecology 10: 461–73.

    Article  Google Scholar 

  • Morris, J. T. 1980. The nitrogen uptake kinetics ofSpartina alterniflora in culture. Ecology 61: 1114–21.

    Article  CAS  Google Scholar 

  • Moseman, S. M. 2007. Opposite diel patternsof nitrogen fixation associated with salt marsh plant species (Spartina foliosa andSalicornia virginica) in southern California. Marine Ecology 28: 276–87.

    Article  CAS  Google Scholar 

  • Musat, F., J. Harder, and F. Widdel. 2006. Study of nitrogen fixation in microbial communities of oil-contaminated marine sediment microcosms. Environmental Microbiology 8: 1834–43.

    Article  CAS  PubMed  Google Scholar 

  • Nelson, D. W. and L. E. Sommers. 1982. Total carbon, organic carbon and organic matter. p. 539–79.In A. L. Page (ed.) Methods of Soil Analysis: Part 2. Chemical and Microbiological Properties. Soil Science Society of America Inc., American Society of Agronomy, Inc., Madison, Wisconsin, USA.

    Google Scholar 

  • Nelson, D. W. and L. E. Sommers. 1996. Total carbon, organic carbon and organic matter. p. 1001–1006.In J. M. Bigham (ed.) Methods of Soil Analysis. Part 3. Chemical Methods. Soil Science Society of America Inc., American Society of Agronomy, Inc., Madison, Wisconsin, USA.

    Google Scholar 

  • Piehler, M. F., C. A. Currin, R. Cassanova, and H. W. Paerl. 1998. Development and N2-fixing activity of the benthic microbial community in transplantedSpartina alterniflora marshes in North Carolina. Restoration Ecology 6: 290–96.

    Article  Google Scholar 

  • Rawsthorne, S. and R. J. Summerfield. 1984. An assessment of different techniques for inoculatingPhaseolus vulgaris withRhizobium. Experimental Agriculture 20: 119–27.

    Article  Google Scholar 

  • Sabra, W., A.-P. Zeng, H. Lunsdorf, and W.-D. Deckwer. 2000. Effect of oxygen on formation and structure ofAzotobacter vinelandii alginate and its role in protecting nitrogenase. Applied Environmental Microbiology 66: 4037–44.

    Article  CAS  Google Scholar 

  • Solorzano, L. 1969. Determination of ammonia in natural waters by the phenolhypochlorite method. Limnology and Oceanography 14: 799–801.

    Article  CAS  Google Scholar 

  • Sundareshwar, P. V., J. T. Morris, E. K. Koepfler, and B. Fornwalt. 2003. Phosphorus limitation of coastal ecosystem processes. Science 299: 563–65.

    Article  CAS  PubMed  Google Scholar 

  • Talbot, M. M. B., J. G. C. Small, and G. C. Bate. 1988. Spatial patterns of nitrogen fixation acetylene reduction along environmental gradients in a warm-temperate estuary. Journal of Experimental Marine Biology and Ecology 117: 255–70.

    Article  CAS  Google Scholar 

  • Teal, J. M., I. Valiela, and D. Berlo. 1979. Nitrogen fixation by rhizosphere and free-living bacteria in salt marsh sediments. Limnology and Oceanography 24: 126–32.

    Article  CAS  Google Scholar 

  • Thompson, S. P., H. W. Paerl, and M. C. Go. 1995. Seasonal patterns of nitrification and denitrification in a natural and a restored salt marsh. Estuaries 18: 399–408.

    Article  CAS  Google Scholar 

  • Tibbies, B. J., M. I. Lucas, V. E. Coyne, and S. T. Newton. 1994. Nitrogenase activity in marine sediments from a temperate saltmarsh lagoon: modulation by complex polysaccharides, ammonium and oxygen. Journal of Experimental Marine Biology and Ecology 184: 1–20.

    Article  Google Scholar 

  • Tyler, A. C., T. A. Mastronicola, and K. J. McGlathery. 2003. Nitrogen fixation and nitrogen limitation of primary production along a natural marsh chronosequence. Oecologia 136: 431–38.

    Article  PubMed  Google Scholar 

  • Tyler, A. C., J. G. Lambrinos, and E. D. Grosholz. 2007. Nitrogen inputs promote the spread of an invasive marsh grass. Ecological Applications 17: 1886–98.

    Article  PubMed  Google Scholar 

  • Welsh, D. T. 2000. Nitrogen fixation in seagrass meadows: regulation, plant-bacteria interactions and significance to primary productivity. Ecology Letters 3: 58–71.

    Article  Google Scholar 

  • Wery, J., O. Turc, and L. Salsac. 1986. Relationship between growth, nitrogen fixation and assimilation in a legume (Medicago sativa L.). Plant and Soil 96: 17–29.

    Article  CAS  Google Scholar 

  • Whiting, G. J., E. L. Gandy, and D. C. Yoch. 1986. Tight coupling of root-associated nitrogen fixation and plant photosynthesis in the salt marsh grassSpartina alterniflora and carbon dioxide enhancement of nitrogenase activity. Applied Environmental Microbiology 52: 108–13.

    CAS  Google Scholar 

  • Yoch, D. C. and G. J. Whiting. 1986. Evidence for ammonium switch-off regulation of nitrogenase activity by bacteria in salt marsh sediments and roots of the grassSpartina alterniflora. Applied Environmental Microbiology 51: 143–49.

    CAS  Google Scholar 

  • Zedler, J. B. 1996. Tidal wetland restoration: a scientific perspective and southern California focus. California Sea Grant College System, University of California, La Jolla, CA, USA. Report No. T-038.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Risa A. Cohen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cohen, R.A., Walker, K. & Carpenter, E.J. Polysaccharide addition effects on rhizosphere nitrogen fixation rates of the California cordgrass,Spartina foliosa . Wetlands 29, 1063–1069 (2009). https://doi.org/10.1672/08-170.1

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/08-170.1

Key Words

Navigation