, Volume 29, Issue 2, pp 747–758 | Cite as

Annual net primary production of macrophytes in the eastern Amazon floodplain

  • Thiago S. F. SilvaEmail author
  • Maycira P. F. Costa
  • John M. Melack


Aquatic herbaceous macrophytes contribute significantly to the input carbon for the Amazon floodplain. These plants have large seasonal variations in areal coverage and high productivity. The present study estimates annual net primary production (NPP) of aquatic herbaceous macrophytes in a large lake on the eastern Amazon floodplain, assesses the sources and amount of uncertainty associated with these measures, and offers a comparison among the estimates of herbaceous macrophyte productivity in the Amazon region. Plant biomass accumulated during the rising water stage of the annual flood cycle, peaking at 2300 to 6100 g m−2 and decreasing later in the year. Annual net primary production was estimated to range from 2400 to 3500 g m−2 yr−1, with above water production between 650 and 1100 g m−2 yr−1, and below water production between 1700 and 2600 g m−2 yr−1. Echinochloa polystachya and Paspalum fasciculatum were the most productive species, followed by Paspalum repens, Hymenachne amplexicaulis, and Oryza perennis. The four main sources of uncertainty in the estimates were macrophyte taxa, location, sampling design, and lack of measurements of dead material loss.

Key Words

carbon dynamics herbaceous aquatic vegetation uncertainty 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Bonnet, M. P., G. Barroux, J. M. Martinez, F. Seyler, P. Moreira-Turcq, G. Cochonneau, J. M. Melack, G. Boaventura, L. Maurice-Bourgoin, J. G. Leon, E. Roux, S. Calmant, P. Kosuth, J. L. Guyot, and P. Seyler. 2008. Floodplain hydrology in an Amazon floodplain lake (Lago Grande de Curuai). Journal of Hydrology 349: 18–30.CrossRefGoogle Scholar
  2. Camarão, A. P., J. B. Lourenço, S. Dutra, J. L. Hornick, and M. B. Da Silva. 2004. Grazing buffalo on flooded pastures in the Brazilian Amazon region: a review. Tropical Grasslands 38: 193–203.Google Scholar
  3. Costa, M. P. F. 2004. Use of SAR satellites for mapping zonation of vegetation communities in the Amazon floodplain. International Journal of Remote Sensing 25: 1817–35.CrossRefGoogle Scholar
  4. Costa, M. P. F. 2005. Estimate of net primary productivity of aquatic vegetation of the Amazon floodplain using Radarsat and JERS-1. International Journal of Remote Sensing 26: 4527–36.CrossRefGoogle Scholar
  5. Efron, B. and R. Tibshirani. 1986. Bootstrap methods for standard errors, confidence intervals, and other measures of statistical accuracy. Statistical Science 1: 54–75.CrossRefGoogle Scholar
  6. Engle, D. L., J. M. Melack, R. D. Doyle, and T. R. Fisher. 2008. High rates of net primary production and turnover of floating grasses on the Amazon floodplain: implications for aquatic respiration and regional CO2 flux. Global Change Biology 14: 369–81.CrossRefGoogle Scholar
  7. Field, C. B., J. T. Randerson, and C. M. Malmstrom. 1995. Global net primary production: combining ecology and remote sensing. Remote Sensing of Environment 51: 74–88.CrossRefGoogle Scholar
  8. Forsberg, B. R., A. H. Devol, J. E. Richey, L. A. Martinelly, and H. dos Santos. 1988. Factors controlling nutrient concentrations in Amazon floodplain lakes. Limnology and Oceanography 33: 41–56.Google Scholar
  9. Hess, L. L., J. M. Melack, E. Novo, C. C. F. Barbosa, and M. Gastil. 2003. Dual-season mapping of wetland inundation and vegetation for the central Amazon basin. Remote Sensing of Environment 87: 404–28.CrossRefGoogle Scholar
  10. Houghton, R. A. 2003. Why are estimates of the terrestrial carbon balance so different? Global Change Biology 9: 500–09.CrossRefGoogle Scholar
  11. Huete, A. R., K. Didan, Y. E. Shimabukuro, P. Ratana, S. R. Saleska, L. R. Hutyra, W. Yang, R. R. Nemani, and R. Myeni. 2006. Amazon rainforest green-up with sunlight in the dry season. Geophysical research Letters 33: 1–4.CrossRefGoogle Scholar
  12. Irion, G., W. J. Junk, and J. A. S. N. de Mello. 1997. The physical and chemical environment. p. 23–46. In W. J. Junk (ed.) The Central Amazon Floodplain. Springer, Berlin, Germany.Google Scholar
  13. Junk, W. J. 1970. Investigations on the ecology and production-biology of the “floating meadows” (Paspalo-Echinochloetum) on the Middle Amazon. Part I. The floating vegetation and its ecology. Amazoniana 2: 449–95.Google Scholar
  14. Junk, W. J. and K. Furch. 1991. Nutrient dynamics in Amazonian floodplains: decomposition of herbaceous plants in aquatic and terrestrial environments. Internationale Vereinigung fuer Theoretische und Angewandte Limnologie Verhandlungen 24: 2080–84.Google Scholar
  15. Junk, W. J. and C. Howard-Williams. 1984. Ecology of aquatic macrophytes in Amazonia. p. 269–253. In H. Sioli, H. J. Dumont, and W. Junk (eds.) The Amazon: limnology and landscape ecology of a mighty tropical river and its basin. Vol. 56 of Monographie Biologicae, Kluwer Academic Publisher, Massachusetts, USA.Google Scholar
  16. Junk, W. J. and M. T. F. Piedade. 1993. Biomass and primary-production of herbaceous plant communities in the Amazon floodplain. Hydrobiologia 263: 155–62.CrossRefGoogle Scholar
  17. Junk, W. J. and M. T. F. Piedade. 1997. Plant life in the floodplain with special reference to herbaceous plants. p. 147–86. In W. J. Junk (ed.) The Central Amazon Floodplain. Springer, Berlin, Germany.Google Scholar
  18. Linthurst, R. A. and R. J. Reimold. 1978. An evaluation of methods for estimating the net aerial primary productivity of estuarine angiosperms. The Journal of Applied Ecology 15: 919–931.CrossRefGoogle Scholar
  19. Long, S. P., E. Garcia-Moya, S. K. Imbamba, A. Kamnalrut, M. T. F. Piedade, J. M. O. Scurlock, Y. K. Shen, and D. O. Hall. 1989. Primary productivity of natural grass ecosystems of the tropics: a reappraisal. Plant and Soil 115: 155–66.CrossRefGoogle Scholar
  20. Manly, B. F. J. 2006. Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall/CRC, Boca Raton, FL, USA.Google Scholar
  21. Melack, J. M. and B. R. Forsberg. 2001. Biogeochemistry of Amazon floodplain lakes and associated wetlands. p. 235–74. In M. McClain, R. L. Victoria, and J. E. Richey (eds.) The Biogeochemistry of the Amazon Basin. Oxford University Press, New York, NY, USA.Google Scholar
  22. Melack, J. M., L. L. Hess, M. Gastil, B. R. Forsberg, S. K. Hamilton, I. B. T. Lima, and E. M. L. M. Novo. 2004. Regionalization of methane emissions in the Amazon Basin with microwave remote sensing. Global Change Biology 10: 530–44.CrossRefGoogle Scholar
  23. Milner, C. and R. E. Hughes. 1968. Methods for the Measurement of the Primary Production of Grassland. IBP Handbook, vol. 6. Blackwell Scientific, Oxford, UK.Google Scholar
  24. Moreira-Turcq, P., P. Seyler, J. L. Guyot, and H. Etcheber. 2003. Exportation of organic carbon from the Amazon River and its main tributaries. Hydrological Processes 17: 1329–44.CrossRefGoogle Scholar
  25. Morison, J. I. L., M. T. F. Piedade, E. Müller, S. P. Long, W. J. Junk, and M. B. Jones. 2000. Very high productivity of the C4 aquatic grass Echinochloa polystachya in the Amazon floodplain confirmed by net ecosystem CO2 flux measurements. Oecologia 125: 400–11.CrossRefGoogle Scholar
  26. Ohly, J. J. and M. Hund. 2000. Floodplain animal husbandry in central Amazonia. p. 313–41. In W. J. Junk (ed.) The Central Amazon Floodplain: Actual Use and Options for a Sustainable Management. Backhuys Publishers, Leiden, SH, Netherlands.Google Scholar
  27. Ometto, J. P. H. B., A. D. Nobre, H. R. Rocha, P. Artaxo, and L. A. Martinelli. 2005. Amazonia and the modern carbon cycle:lessons learned. Oecologia 143: 483–500.CrossRefPubMedGoogle Scholar
  28. Piedade, M. T. F., W. J. Junk, and S. P. Long. 1997. Nutrient dynamics of the highly productive C4 macrophyte Echinochloa polystachya on the Amazon floodplain. Functional Ecology 11: 60–65.CrossRefGoogle Scholar
  29. Piedade, M. T. F., W. J. Junk, and S. P. Long. 1991. The productivity of the C4 Grass Echinochloa polystachya on the Amazon Floodplain. Ecology 72: 1456–63.CrossRefGoogle Scholar
  30. Piedade, M. T. F., S. P. Long, and W. J. Junk. 1994. Leaf and canopy photosynthetic CO2 uptake of a stand of Echinochloa polystachya on the Central Amazon floodplain. Oecologia 97: 193–201.CrossRefGoogle Scholar
  31. Quay, P. D., D. O. Wilbur, J. E. Richey, J. I. Hedges, and A. H. Devol. 1992. Carbon cycling in the Amazon River — implications from the 13C compositions of particles and solutes. Limnology and Oceanography 37: 857–71.Google Scholar
  32. Richey, J. E., J. M. Melack, A. K. Aufdenkampe, V. M. Ballester, and L. L. Hess. 2002. Outgassing from Amazonian rivers and wetlands as a large tropical source of atmospheric CO2. Nature 416: 617–20.CrossRefPubMedGoogle Scholar
  33. Saleska, S. R., S. D. Miller, D. M. Matross, M. L. Goulden, S. C. Wofsy, H. R. da Rocha, P. B. de Camargo, P. Crill, B. C. Daube, H. C. de Freitas, L. Hutyra, M. Keller, V. Kirchhoff, M. Menton, J. W. Munger, E. H. Pyle, A. H. Rice, and H. Silva. 2003. Carbon in Amazon forests: unexpected seasonal fluxes and disturbance-induced losses. Science 302: 1554–57.CrossRefPubMedGoogle Scholar
  34. Silva, T. S. F., M. P. F. Costa, J. M. Melack, and E. M. L. M. Novo. 2008. Remote sensing of aquatic vegetation: theory and applications. Environmental Monitoring and Assessment 140: 131–45.CrossRefPubMedGoogle Scholar
  35. Silva, T. S. F., R. M. Freitas, and E. M. L. M. Novo. 2007. Monitoramento de áreas alagáveis. p. 255–63. In B. F. T. Rudorff, Y. E. Shimabukuro, and J. C. Ceballos (eds.) O Sensor Modis e suas Aplicações Ambientais no Brasil. Parêntese Editora, São José dos Campos, SP, Brazil.Google Scholar

Copyright information

© Society of Wetland Scientists 2009

Authors and Affiliations

  • Thiago S. F. Silva
    • 1
    Email author
  • Maycira P. F. Costa
    • 1
  • John M. Melack
    • 2
  1. 1.Department of GeographyUniversity of VictoriaVictoriaCanada
  2. 2.Bren School of Environmental Science and ManagementUniversity of CaliforniaSanta BarbaraUSA

Personalised recommendations