Abstract
The use of treated wastewater to restore freshwater inputs to arid and semi-arid wetlands is a relatively new concept, and the long-term effects of such practices on plant community structure are largely unknown. We compared vegetation composition, pore water salinity, and soil moisture along permanent transects at a restoration site receiving wastewater effluent since October 1998 to three nearby downstream sites subjected only to freshwater inputs via precipitation and river flooding. Local climate during this period was highly variable and included two droughts and a wet period that began with a series of large floods. Significantly lower pore water salinities were observed at the wastewater site compared to downstream sites, particularly during droughts, when salinities were 20%.–40%. lower at the wastewater site. Between July 1997 and July 2002, cover of the clonal stress-tolerator, Salicornia virginica, decreased from 87% to 33% at the wastewater site, while cover of the clonal dominant, Borrichia frutescens, increased from 5% to 55%. In contrast, S. virginica cover increased at two downstream sites during the same period, while cover of B. frutescens remained relatively stable. Following large floods in summer 2002, which marked the beginning of a three year-wet period, B. frutescens cover increased at all sites. We concluded that constant wastewater additions and climate-driven wet periods affected plant community structure similarly by promoting expansion of the clonal dominant B. frutescens and inhibiting expansion of the stress-tolerant species S. virginica. We propose distinct management strategies for using wastewater to 1) increase plant cover, 2) promote endemic plant assemblages, and 3) maximize species richness.
This is a preview of subscription content, access via your institution.
Literature Cited
Alexander, H. D. and K. H. Dunton. 2002. Freshwater inundation effects on emergent vegetation of a hypersaline salt marsh. Estuaries 25: 1426–35.
Alexander, H. D. and K. H. Dunton. 2006. Treated wastewater effluent as an alternative freshwater source in a hypersaline salt marsh: impacts on salinity, inorganic nitrogen, and emergent vegetation. Journal of Coastal Research 22: 377–92.
Antlfinger, A. E. and E. L. Dunn. 1983. Water use and salt balance in three salt marsh succulents. American Journal of Botany 70: 561–67.
Austin, M. P. and T. M. Smith. 1989. A new model for the continuum concept. Vegetatio 83: 35–47.
Baldwin, A. H. and I. A. Mendelssohn. 1998. Effects of salinity and water level on coastal marshes: an experimental test of disturbance as a catalyst for vegetation change. Aquatic Botany 61: 255–68.
Bertness, M. D. 1991. Zonation of Spartina patens and Spartina alterniflora in a New England salt marsh. Ecology 72: 138–48.
Bertness, M. D., L. Gough, and S. W. Shumway. 1992. Salt tolerances and the distribution of fugitive salt marsh plants. Ecology 73: 1842–51.
Bertness, M. D. and S. C. Pennings. 2000. Spatial variation in process and pattern in salt marsh plant communities in eastern North America. p. 39–65. In M. P. Weinstein and D. A. Kreeger (eds.) Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dortrecht, The Netherlands.
Boutin, C. and P. A. Keddy. 1993. A functional classification of wetland plants. Journal of Vegetation Science 4: 591–600.
Chan, T. U., D. P. Hamilton, B. J. Robson, B. R. Hodges, and C. Dallimore. 2002. Impacts of hydrological changes on phytoplankton succession in the Swan River, Western Australia. Estuaries 25: 1406–15.
Chapman, V. J. 1974. Salt Marshes and Salt Deserts of the World, second Edition. Verlag Von J. Cramer, Lehre, Germany.
Clarke, K. R. and R. M. Warwick. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, second edition. PRIMER-E, Plymouth, UK.
Dunton, K. H. and E. M. Albert. 2005. Allison Wastewater Treatment Plant Effluent Diversion Demonstration Project. Volume I: Executive Summary. University of Texas-Marine Science Institute, Port Aransas, Texas and Texas A&M University-Corpus Christi, Center for Coastal Studies, Corpus Christi, Texas.
Dunton, K. H., B. Hardegree, and T. E. Whitledge. 2001. Response of estuarine marsh vegetation to interannual variations in precipitation. Estuaries 24: 851–61.
Forbes, M. G. and K. H. Dunton. 2006. Response of a subtropical estuarine marsh to local climatic change in the southwestern Gulf of Mexico. Estuaries and Coasts 29B: 1–13.
Gough, L., J. B. Grace, and K. L. Taylor. 1994. The relationship between species richness and community biomass: the importance of environmental variables. Oikos 70: 271–79.
Grime, J. P. 1974. Vegetation classification by reference to strategies. Ecology 250: 26–31.
Howard, R. J. and I. A. Mendelssohn. 1999. Salinity as a constraint on growth of oligohaline marsh macrophytes. I. species variation in stress tolerance. American Journal of Botany 86: 785–94.
Ji, J-H. and N-B. Chang. 2005. Risk assessment for optimal freshwater inflow in response to sustainability indicators in semi-arid coastal bay. Stochastic Environmental Research and Risk Assessment 19: 111–24.
Kusler, J. A. and M. E. Kentula. 1990. Wetland Creation and Restoration: The Status of the Science. Island Press, Covelo, California, USA.
McCune, B. and J. B. Grace. 2002. Analysis of Ecological Communities. MjM Software Design, Gleneden Beach, Oregon, USA.
Montagna, P. A., M. Alber, P. Doering, and M. S. Connor. 2002. Freshwater inflow: science, policy, management. Estuaries 25: 1243–45.
Onuf, C. P. and J. B. Zedler. 1988. Pattern and process in aridregion salt marshes —southern California. p. 570–581. In D. D. Hook (ed.) The Ecology and Management of Wetlands, Volume 1: Ecology of Wetlands. Timber Press, Portland, Oregon.
Palmer, T. A., P. A. Montagna, and R. Kalke. 2002. Downstream effects of restored freshwater inflow to Rincon Bayou, Nueces Delta, Texas, USA. Estuaries 25: 1448–56.
Rosenberry, D. O., D. I. Stannard, T. C. Winter, and M. L. Martinez. 2004. Comparison of 13 equations for determining evapotranspiration from a prairie wetland, Cottonwood Lake area, North Dakota, USA. Wetlands 24: 483–97.
U. S. Bureau of Reclamation. 2000. R. G. Harris (ed.). Concluding Report: Rincon Bayou Demonstration Project. Volume II. Findings, U.S. Department of the Interior. Bureau of Reclamation, Austin, Texas, USA.
Vogl, R. J. 1966. Salt-marsh vegetation of Upper Newport Bay, California. Ecology 47: 80–87.
Vörösmarty, C. J. and D. Sahagian. 2000. Anthropogenic disturbance of the terrestrial water cycle. BioScience 50: 753–65.
Wang, Q., C. H. Wang, B. Zhao, Z. J. Ma, Y. Q. Luo, J. K. Chen, and B. Li. 2006. Effects of growing conditions on the growth of and interactions between salt marsh plants: implications for invasibility of habitats. Biological Invasions 8: 1547–60.
Ward, G. H. and M. J. Irlbeck. 2000. Hydrography, p. 3-1–3-24. In R. G. Harris (ed.) Concluding Report: Rincon Bayou Demonstration Project. Volume II. Findings, U.S. Department of the Interior. Bureau of Reclamation, Austin, Texas.
Ward, G. H., M. J. Irlbeck, and P. Montagna. 2002. Experimental river diversion for marsh enhancement. Estuaries 25(6B): 1416–25.
Weilhoefer, C. L. 1998. Effects of freshwater inflow, salinity and nutrients on salt marsh vegetation in south Texas. Masters Thesis. University of Texas, Austin, Texas, USA.
Zedler, J. B., J. C. Callaway, J. S. Desmond, G. Vivian-Smith, G. D. Williams, G. Sullivan, A. E. Brewster, and B. K. Bradshaw. 1999. Californian salt-marsh vegetation: an improved model of spatial pattern. Ecosystems 2: 19–35.
Zedler, J. B. and C. P. Onuf. 1984. Biological and physical filtering in arid-region estuaries: seasonality, extreme events, and effects of watershed modification. In The Estuary as a Filter, Kennedy, V. S. (ed.), pp. 415–32, Academic Press, Orlando, Florida.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Forbes, M.G., Alexander, H.D. & Dunton, K.H. Effects of pulsed riverine versus non-pulsed wastewater inputs of freshwater on plant community structure in a semi-arid salt marsh. Wetlands 28, 984–994 (2008). https://doi.org/10.1672/07-127.1
Received:
Accepted:
Issue Date:
DOI: https://doi.org/10.1672/07-127.1