Abstract
The invasion of U.S. east coast salt marshes by common reed (Phragmites australis) and the efforts to remove it and restore marshes to their natural vegetation (Spartina spp.) can directly impact mummichog (Fundulus heteroclitus) as this abundant species is critically linked to marsh habitat. We estimated population density, growth, and biomass to determine production of mummichog in treated Phragmites (“Treated,” now dominated by Spartina), untreated Phragmites, and naturally occurring Spartina habitats in Delaware Bay using throw traps for small fish (mean = 24.1 mm standard length or SL, 95% CI = 10–38) and tag/recapture for large fish (mean = 36.5 mm SL, 95% CI = 18–64). Mean population density of small fish on the marsh surface was significantly higher in the Spartina (20.2 fish m−2) and Treated (14.1 fish m−2) habitats than in the Phragmites (0 fish m−2) habitat. Population density of large fish was similar among all three habitats (mean = 0.9–1.7 fish m−2). Mean absolute growth rates of large fish were significantly higher in the Spartina (0.24 mm d−1) and Treated (0.24 mm d−1) habitats than in the Phragmites (0.13 mm d−1) habitat. Mean monthly mummichog production during June to September varied among habitats with Spartina highest (1.22 g dw m−2 mo−1), Treated intermediate (0.51 gdwm−2mo−1), and Phragmites lowest (0.07 g dw m−2 mo−1). Small fish were the largest contributor to the production estimates in Spartina and Treated habitats. The Phragmites habitat had little or no standing water at low tide (i.e., optimal habitat for small fish was lacking), and thus, it had the lowest production for mummichog. These results also indicated that Treated marshes were more similar to Spartina than to Phragmites habitat; therefore, it appears that habitat quality and mummichog production can be increased with restoration.
This is a preview of subscription content, access via your institution.
Literature Cited
Able, K. W. and M. Castagna. 1975. Aspects of an undescribed reproductive behavior in Fundulus heteroclitus (Pisces: Cyprinodontidae) from Virginia. Chesapeake Science 16: 282–84.
Able, K. W. and M. P. Fahay. 1998. The First Year in the Life of Estuarine Fishes in the Middle Atlantic Bight. Rutgers University Press, New Brunswick, NJ, USA.
Able, K. W. and S. M. Hagan. 2000. Effects of common reed (Phragmites australis) invasion on marsh surface macrofauna: response of fishes and decapod crustaceans. Estuaries 23: 633–46.
Able, K. W. and S. M. Hagan. 2003. Impact of common reed, Phragmites australis, on essential fish habitat: influence on reproduction, embryological development and larval abundance of mummichog (Fundulus heteroclitus). Estuaries 26: 40–50.
Able, K. W., S. M. Hagan, and S. A. Brown. 2003. Mechanisms of marsh habitat alteration due to Phragmites: response of young-of-the-year mummichog (Fundulus heteroclitus) to treatment for Phragmites removal. Estuaries 26: 484–94.
Able, K. W., S. M. Hagan, and S. A. Brown. 2006. Habitat use, movement, and growth of young-of-the-year Fundulus spp. in southern New Jersey salt marshes: comparison based on tag/ recapture. Journal of Experimental Marine Biology and Ecology 335: 177–87.
Able, K. W., D. M. Nemerson, and T. M. Grothues. 2004. Evaluating salt marsh restoration in Delaware Bay: analysis of fish response at former salt hay farms. Estuaries 27: 58–69.
Chambers, R. M., L. A. Meyerson, and K. Saltonstall. 1999. Expansion of Phragmites australis into tidal wetlands of North America. Aquatic Botany 64: 261–73.
Currin, C. A., S. C. Wainright, K. W. Able, M. P. Weinstein, and C. M. Fuller. 2003. Determination of food web support and trophic position of the mummichog, Fundulus heteroclitus, in New Jersey smooth cordgrass (Spartina alterniflora), common reed (Phragmites australis), and restored salt hay marshes. Estuaries 26: 495–510.
Deegan, L. A., J. E. Hughes, and R. A. Rountree. 2000. Salt marsh ecosystem support of marine transient species, p. 333–65. In M. P. Weinstein and D. A. Kreeger (eds.) Concepts and Controversies in Tidal Marsh Ecology. Kluwer Academic Publishers, Dordrecht, The Netherlands.
Fell, P., S. P. Weissbach, D. A. Jones, M. A. Fallon, J. A. Zeppieri, E. K. Faison, K. A. Lennon, K. J. Newberry, and L. K. Reddington. 1998. Does invasion of oligohaline tidal marshes by reed grass, Phragmites australis (Cav.) Trin. Ex Steud., affect the availability of prey sources for the mummichog, Fundulus heteroclitus L.? Journal of Experimental Marine Biology and Ecology 222: 59–77.
Grothues, T. M. and K. W. Able. 2003a. Response of juvenile fish assemblages in tidal salt marsh creeks treated for Phragmites removal. Estuaries 26: 563–73.
Grothues, T. M. and K. W. Able. 2003b. Discerning vegetation and environmental correlates with subtidal marsh fish assemblage dynamics during Phragmites eradication efforts: interannual trend measures. Estuaries 26: 574–86.
Hardy. Jr, J. D. 1978. Development of Fishes of the Middle Atlantic Bight. Volume II, p. 162–85. U. S. Department of the Interior, Washington, DC, USA. FWS/OBS-78/12.
Hunter, K., D. A. Fox, L. M. Brown, and K. W. Able. 2006. Responses of resident marsh fishes to stages of Phragmites australis invasion in three mid-Atlantic estuaries, U.S.A. Estuaries and Coasts 29: 487–98.
Jefferts, K. B., P. K. Bergman, and H. F. Fiscus. 1963. A coded wire identification system for macro-organisms. Nature 198: 460–62.
Jolly, G. M. 1965. Explicit estimates from capture-recapture data with both dead and immigration-stochastic model. Biometrik 52: 225–47.
Jones, W. L. and W. C. Lehman. 1987. Phragmites control and revegetation following aerial applications of glyphosate in Delaware. p. 522. In W. R. Whitman and W. H. Meredith (eds.) Waterfowl and Wetlands Symposium. Delaware Coastal Management Program, Delaware Department of Natural Resources and Environmental Control, Dover, DE, USA.
Kneib, R. T. 1984. Patterns in the utilization of the intertidal salt marsh by larvae and juveniles of Fundulus heteroclitus (Linnaeus) and Fundulus luciae (Baird). Journal of Experimental Marine Biology and Ecology 83: 41–51.
Kneib, R. T. 1986. The role of Fundulus heteroclitus in salt marsh trophic dynamics. American Zoologist 26: 259–69.
Kneib, R. T. 1987. Predation risk and use of intertidal habitats by young fishes and shrimp. Ecology 68: 379–86.
Kneib, R. T. 1993. Growth and mortality in successive cohorts of fish larvae within an estuarine nursery. Marine Ecology Progress Series 94: 115–27.
Kneib, R. T. 1997. The role of tidal marshes in the ecology of estuarine nekton. Oceanography and Marine Biology: An Annual Review 35: 163–220.
Kneib, R. T. 2003. Bioenergetic and landscape considerations for scaling expectations of nekton production from intertidal marshes. Marine Ecology Progress Series 264: 279–96.
Kneib, R. T. and S. L. Wagner. 1994. Nekton use of vegetated marsh habitats at different stages of tidal inundation. Marine Ecology Progress Series 106: 227–38.
Marks, M., B. Lapin, and J. Randall. 1994. Phragmites australis: Threats, management and monitoring. Natural Areas Journal 4: 285–94.
Meredith, W. H. and V. A. Lotrich. 1979. Production dynamics of a tidal creek population of Fundulus heteroclitus (Linnaeus). Estuarine and Coastal Marine Science 8: 99–118.
Meyer, D. L., J. M. Johnson, and J. W. Gill. 2001. Comparisons of nekton use of Phragmites australis and Spartina alterniflora marshes in the Chesapeake Bay, U.S.A. Marine Ecology Progress Series 209: 71–81.
Morin, A., T. A. Mousseau, and D. A. Roff. 1987. Accuracy and precision of secondary production estimates. Limnology and Oceanography 32: 1342–52.
Nemerson, D. M. and K. W. Able. 2003. Spatial and temporal patterns in the distribution and feeding habits of Morone saxatilis, in marsh creeks of Delaware Bay, USA. Fisheries Management Ecology 20: 337–48.
Niering, W. A. and R. S. Warren. 1980. Vegetation patterns and processes in a New England salt marsh. Bioscience 30: 301–7.
Orson, R. A., R. S. Warren, and W. A. Niering. 1987. Development of a tidal marsh in a New England river valley. Estuaries 10: 20–27.
Osgood, D. T., D. J. Yozzo, R. M. Chambers, D. Jacobson, T. Hoffman, and J. Wnek. 2003. Tidal hydrology and habitat utilization by resident nekton in Phragmites and non-Phrag-mites marshes. Estuaries 26: 522–33.
Osgood, D. T., D. J. Yozzo, R. M. Chambers, S. Pianka, J. Lewis, and C. LePage. 2006. Patterns of habitat utilization by resident nekton in Phragmites and Typha marshes of the Hudson River Estuary, New York. American Fisheries Society Special Symposium 51: 151–73.
Raichel, D. L., K. W. Able, and J. M. Hartman. 2003. The influence of Phragmites australis (common reed) on the distribution, abundance and potential prey of a resident marsh fish in the Hackensack Meadowlands, New Jersey. Estuaries 26: 511–21.
Ricker, W. E. 1975. Computation and interpretation of biological statistics of fish populations. Bulletin of the Fisheries Research Board of Canada 191: 1–382.
Rooth, J. E. and J. C. Stevenson. 2000. Sediment deposition patterns in Phragmites australis communities: implications for coastal areas threatened by rising sea-level. Wetlands Ecology and Management 8: 173–83.
Rozas, L. P. and T. J. Minello. 1997. Estimating densities of small fishes and decapod crustaceans in shallow estuarine habitats: a review of sampling design with focus on gear selection. Estuaries 20: 199–213.
Saltonstall, K. 2003. Genetic variation among North American populations of Phragmites australis: implications for management. Estuaries 26: 511–21.
Seber, G. A. F. 1965. A note on the multiple-recapture census. Biometrik 52: 249–59.
Seber, G. A. F. 1973. The Estimation of Animal Abundance and Related Parameters. Hafner Press, New York, NY, USA.
Talbot, C. W. and K. W. Able. 1984. Composition and distribution of larval fishes in New Jersey high marshes. Estuaries 7: 434–43.
Taylor, M. H., L. Di Michele, and G. J. Leach. 1977. Egg stranding in the life cycle of the mummichog, Fundulus heteroclitus. Copeia 1977: 397–99.
Teo, S. L. H. 1999. Movement and population dynamics of the mummichog, Fundulus heteroclitus, in a restored salt marsh. M. S. Thesis, Rutgers University, New Brunswick, NJ, USA.
Teo, S. L. H. and K. W. Able. 2003a. Growth and production of the common mummichog (Fundulus heteroclitus) in a restored salt marsh. Estuaries 26: 51–63.
Teo, S. L. H. and K. W. Able. 2003b. Habitat use and movement of the mummichog (Fundulus heteroclitus) in a restored salt marsh. Estuaries 26: 720–30.
Tupper, M. and K. W. Able. 2000. Movements and food habits of striped bass (Morone saxatilis) in Delaware Bay (USA) salt marshes: comparison of a restored and a reference marsh. Marine Biology 137: 1049–58.
Underwood, A. J. 1997. Experiments in Ecology: Their Logical Design and Interpretation Using Analysis of Variance. Cambridge UniversityPress, Cambridge, UK.
Valiela, I., J. E. Wright, J. M. Teal, and S. B. Volkmann. 1977. Growth, production and energy transformations in the salt marsh killifish Fundulus heteroclitus. Marine Biology 40: 135–44.
Wainright, S. C., M. P. Weinstein, K. W. Able, and C. A. Currin. 2000. Relative importance of benthic microalgae, phytoplankton and the detritus of smooth cordgrass (Spartina) and the common reed (Phragmites) to brackish marsh food webs. Marine Ecology Progress Series 200: 77–91.
Weinstein, M. P. and J. H. Balletto. 1999. Does the common reed, Phragmites australis, affect essential fish habitat? Estuaries 22: 793–802.
Weinstein, M. P., J. H. Balletto, J. M. Teal, and D. F. Ludwig. 1997. Success criteria and adaptive management for a largescale wetland restoration project. Wetlands Ecology and Management 4: 111–27.
Weinstein, M. P., J. R. Keough, G. R. Gintenspergen, and S. Y. Litvin. 2003. Preface: Phragmites australis: a sheep in wolf’s clothing? Estuaries 26: 397.
Weinstein, M. P., S. Y. Litvin, K. L. Bosley, C. M. Fuller, and S. C. Wainright. 2000. The role of tidal salt marsh as an energy source for marine transient and resident finfishes: a stable isotope approach. Transactions of the American Fisheries Society 129: 797–810.
Weinstein, M. P., J. M. Teal, J. H. Balletto, and K. A. Strait. 2001. Restoration principles emerging from one of the world’s largest tidal marsh restoration projects. Wetlands Ecology and Management 9: 387–407.
Weisberg, S. B. and V. A. Lotrich. 1982. The importance of an infrequently flooded intertidal marsh surface as an important energy source for the mummichog Fundulus heteroclitus: an experimental approach. Marine Biology 66: 307–10.
Windham, L. and R. G. Lathrop. 1999. Effects of Phragmites australis (common reed) invasion on aboveground biomass and soil properties in brackish tidal marsh of the Mullica River, New Jersey. Estuaries 22: 927–35.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Hagan, S.M., Brown, S.A. & Able, K.W. Production of mummichog (Fundulus heteroclitus): Response in marshes treated for common reed (Phragmites australis) removal. Wetlands 27, 54–67 (2007). https://doi.org/10.1672/0277-5212(2007)27[54:POMFHR]2.0.CO;2
Received:
Revised:
Accepted:
Issue Date:
DOI: https://doi.org/10.1672/0277-5212(2007)27[54:POMFHR]2.0.CO;2