, Volume 26, Issue 4, pp 889–916 | Cite as

The carbon balance of North American wetlands

  • Scott D. Bridgham
  • J. Patrick Megonigal
  • Jason K. Keller
  • Norman B. Bliss
  • Carl Trettin


We examine the carbon balance of North American wetlands by reviewing and synthesizing the published literature and soil databases. North American wetlands contain about 220 Pg C, most of which is in peat. They are a small to moderate carbon sink of about 49 Tg C yr−1, although the uncertainty around this estimate is greater than 100%, with the largest unknown being the role of carbon sequestration by sedimentation in freshwater mineral-soil wetlands. We estimate that North American wetlands emit 9 Tg methane (CH4) yr−1; however, the uncertainty of this estimate is also greater than 100%. With the exception of estuarine wetlands, CH4 emissions from wetlands may largely offset any positive benefits of carbon sequestration in soils and plants in terms of climate forcing. Historically, the destruction of wetlands through land-use changes has had the largest effects on the carbon fluxes and consequent radiative forcing of North American wetlands. The primary effects have been a reduction in their ability to sequester carbon (a small to moderate increase in radiative forcing), oxidation of their soil carbon reserves upon drainage (a small increase in radiative forcing), and reduction in CH4 emissions (a small to large decrease in radiative forcing). It is uncertain how global changes will affect the carbon pools and fluxes of North American wetlands. We will not be able to predict accurately the role of wetlands as potential positive or negative feedbacks to anthropogenic global change without knowing the integrative effects of changes in temperature, precipitation, atmospheric carbon dioxide concentrations, and atmospheric deposition of nitrogen and sulfur on the carbon balance of North American wetlands.

Key Words

carbon methane North America plants sedimentation soil wetlands 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alford, D. P., R. D. Delaune, and C. W. Lindau. 1997. Methane flux from Mississippi River deltaic plain wetlands. Biogeochemistry 37: 227–236.CrossRefGoogle Scholar
  2. Armentano, T. B. and E. S. Menges. 1986. Patterns of change in the carbon balance of organic soilwetlands of the temperate zone. Journal of Ecology 74: 755–774.CrossRefGoogle Scholar
  3. Aselmann, I. and P. J. Crutzen. 1989. Global distribution of natural freshwater wetlands and rice paddies, their net primary productivity, seasonality and possible methane emissions. Journal of Atmospheric Chemistry 8: 307–359.CrossRefGoogle Scholar
  4. Barker, J. R., G. A. Baumgardner, D. P. Turner, and J. J. Lee. 1996. Carbon dynamics of the conservation and wetland reserve program. Journal of Soil and Water Conservation 51: 340–346.Google Scholar
  5. Bartlett, D. S., K. B. Bartlett, J. M. Hartman, R. C. Harriss, D. I. Sebacher, R. Pelletier-Travis, D. D. Dow, and D. P. Brannon. 1989. Methane emissions from the Florida Everglades: patterns of variability in a regional wetland ecosystem. Global Biogeochemical Cycles 3: 363–374.CrossRefGoogle Scholar
  6. Bartlett, K. B., D. S. Bartlett, R. C. Harriss, and D. I. Sebacher. 1987. Methane emissions along a salt marsh salinity gradient. Biogeochemistry 4: 183–202.CrossRefGoogle Scholar
  7. Bartlett, K. B. and R. C. Harriss. 1993. Review and assessment of methane emissions from wetlands. Chemosphere 26: 261–320.CrossRefGoogle Scholar
  8. Bartlett, K. B., R. C. Harriss, and D. I. Sebacher. 1985. Methane flux from coastal salt marshes. Journal of Geophysical Research 90: 5710–5720.CrossRefGoogle Scholar
  9. Batjes, N. H. 1996. Total carbon and nitrogen in the soils of the world. European Journal of Soil Science 47: 151–163.CrossRefGoogle Scholar
  10. Birdsey, R. A. 1992. Carbon storage and accumulation in United States forest ecosystems. Forest Service, Washington, DC, USA. General Technical Report WO-59.Google Scholar
  11. Blunier, T., J. Chappellaz, J. Schwander, B. Stauffer, and D. Raynaud. 1995. Variations in atmospheric methane concentration during the Holocene epoch. Nature 374: 46–49.CrossRefGoogle Scholar
  12. Bourne, J. 2000. Louisiana’s vanishing wetlands: going, going … Science 289: 1860–1863.PubMedCrossRefGoogle Scholar
  13. Bridgham, S. D., C. A. Johnston, J. Pastor, and K. Updegraff. 1995. Potential feedbacks of northern wetlands on climate change. BioScience 45: 262–274.CrossRefGoogle Scholar
  14. Bridgham, S. D., J. P. Megonigal, J. K. Keller, C. Trettin, and N. B. Bliss. 2007. Wetlands. In Sate of the Carbon Cycle Report — North America, Synthesis and Assessment Product 2.2. U.S. Climate Change Program. (in press)Google Scholar
  15. Bridgham, S. D., C.-L. Ping, J. L. Richardson, and K. Updegraff. 2000. Soils of northern peatlands: Histosols and Gelisols. p. 343–370. In J. L. Richardson and M. J. Vepraskas (eds.) Wetland Soils: Genesis, Hydrology, Landscapes, and Classification. CRC Press, Boca Raton, FL, USA.Google Scholar
  16. Bridgham, S. D., K. Updegraff, and J. Pastor. 1998. Carbon, nitrogen, and phosphorus mineralization in northern wetlands. Ecology 79: 1545–1561.Google Scholar
  17. Brown, M. J., G. M. Smith, and J. McCollum. 2001. Wetland forest statistics for the south Atlantic states. Southern Research Station, U.S. Forest Service, Asheville, NC, USA. RB-SRS-062.Google Scholar
  18. Burke, R. A., T. R. Barber, and W. M. Sackett. 1988. Methane flux and stable hydrogen and carbon isotope composition of sedimentary methane from the Florida Everglades. Global Biogeochemical Cycles 2: 329–340.CrossRefGoogle Scholar
  19. Cao, M., K. Gregson, and S. Marshall. 1998. Global methane emission from wetlands and its sensitivity to climate change. Atmospheric Environment 32: 3293–3299.CrossRefGoogle Scholar
  20. Carroll, P. C. and P. M. Crill. 1997. Carbon balance of a temperate poor fen. Global Biogeochemical Cycles 11: 349–356.CrossRefGoogle Scholar
  21. Chanton, J. P., G. J. Whiting, J. D. Happell, and G. Gerard. 1993. Contrasting rates and diurnal patterns of methane emission from emergent aquatic macrophytes. Aquatic Botany 46: 111–128.CrossRefGoogle Scholar
  22. Chanton, J. P., G. J. Whiting, W. J. Showers, and P. M. Crill. 1992. Methane flux from Peltandra virginica: stable isotope tracing and chamber effects. Global Biogeochemical Cycles 6: 15–31.CrossRefGoogle Scholar
  23. Chappellaz, J., T. Bluniert, D. Raynaud, J. M. Barnola, J. Schwander, and B. Stauffert. 1993. Synchronous changes in atmospheric CH4 and Greenland climate between 40 and 8 kyr BP. Nature 366: 443–445.CrossRefGoogle Scholar
  24. Chimner, R. A. and D. J. Cooper. 2003. Carbon dynamics of pristine and hydrologically modified fens in the southern Rocky Mountains. Canadian Journal of Botany 891: 477–491.CrossRefGoogle Scholar
  25. Chmura, G. L., S. C. Anisfeld, D. R. Cahoon, and J. C. Lynch. 2003. Global carbon sequestration in tidal, saline wetland soils. Global Biogeochemical Cycles 17: 1111.CrossRefGoogle Scholar
  26. Cleary, J., N. T. Roulet, and T. R. Moore. 2005. Greenhouse gas emissions from Canadian peat extraction, 1990–2000: A lifecycle analysis. Ambio 34: 456–461.PubMedGoogle Scholar
  27. Clymo, R. S., J. Turunen, and K. Tolonen. 1998. Carbon accumulation in peatland. Oikos 81: 368–388.CrossRefGoogle Scholar
  28. Coles, J. R. P. and J. B. Yavitt. 2004. Linking belowground carbon allocation to anaerobic CH4 and CO2 production in a forested peatland, New York state. Geomicrobiology Journal 21: 445–454.CrossRefGoogle Scholar
  29. Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1979. Classification of wetlands and deepwater habitats of the United States. Fish and Wildlife Service, Washington, DC, USA. FWS/OBS-79/31.Google Scholar
  30. Craft, C. B. and W. P. Casey. 2000. Sediment and nutrient accumulation in floodplain and depressional freshwater wetlands of Georgia, USA. Wetlands 20: 323–332.CrossRefGoogle Scholar
  31. Dahl, T. E. 1990. Wetland losses in the United States 1780’s to 1980’s. Fish and Wildlife Service, Washington, DC, USA.Google Scholar
  32. Dahl, T. E. 2000. Status and Trends of Wetlands in the Conterminous United States 1986 to 1997. Fish and Wildlife Service, Washington, DC, USA.Google Scholar
  33. Dahl, T. E. and C. E. Johnson. 1991. Status and Trends of Wetlands in the Conterminous United States, Mid-1970’s to Mid-1980’s. Fish and Wildlife Service, Washington, DC, USA.Google Scholar
  34. Davidson, I., R. Vanderkam, and M. Padilla. 1999. Review of wetland inventory information in North America. Supervising Scientist, Canberra, Australia. Supervising Scientist Report 144.Google Scholar
  35. Day Jr., J. W., G. P. Shafer, L. D. Britsch, D. J. Reed, S. R. Hawes, and D. Cahoon. 2000. Pattern and process of land loss in the Mississippi Delta: A spatial and temporal analysis of wetland habitat change. Estuaries 23: 425–438.CrossRefGoogle Scholar
  36. Day Jr., J. W., G. P. Shaffer, D. J. Reed, D. R. Cahoon, L. D. Britsch, and S. R. Hawes. 2001. Patterns and processes of wetland loss in coastal Louisiana are complex: A reply to Turner 2001. Estimating the indirect effects of hydrologic change on wetland loss: If the earth is curved, then how would we know it? Estuaries 24: 647–651.Google Scholar
  37. DeLaune, R. D., C. J. Smith, and W. H. Patrick Jr. 1983. Methane release from Gulf coast wetlands. Tellus 35B: 8–15.CrossRefGoogle Scholar
  38. Dise, N. 1993. Methane emissions from Minnesota peatlands: spatial and seasonal variability. Global Biogeochemical Cycles 7: 123–142.CrossRefGoogle Scholar
  39. Dise, N. B. and E. S. Verry. 2001. Suppression of peatland methane emission by cumulative sulfate deposition in simulated acid rain. Biogeochemistry 53: 143–160.CrossRefGoogle Scholar
  40. Dugan, P. (ed.) 1993. Wetlands in Danger—A World Conservation Atlas. Oxford University Press, New York, NY, USA.Google Scholar
  41. Ehhalt, D., M. Prather, F. Dentener, E. Dlugokencky, E. Holland, I. Isaksen, J. Katima, V. Kirchhoff, P. Matson, P. Midgley, and M. Wang. 2001. Atmospheric chemistry and greenhouse gases. p. 239–287. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  42. Eswaran, H., E. Van Den Berg, and J. Kimble. 1995. Global soil carbon resources. p. 27–43. In R. Lal, J. Kimble, E. Levine, and B. A. Stewart (eds.) Soils and Global Change. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  43. Euliss, N. H., R. A. Gleason, A. Olness, R. L. McDougal, H. R. Murkin, R. D. Robarts, R. A. Bourbonniere, and B. G. Warner. 2006. North American prairie wetlands are important nonforested land-based carbon storage sites. Science of the Total Environment 361: 179–188.PubMedCrossRefGoogle Scholar
  44. FAO. 1991. The Digitized Soil Map of the World. Food and Agriculture Organization, Rome, Italy. World Soil Resource Report, 64.Google Scholar
  45. FAO-UNESCO. 1974. Soil Map of the World (1:5,000,000). UNESCO, Paris, France.Google Scholar
  46. Field, D. W., A. J. Reyer, P. V. Genovese, and B. D. Shearer. 1991. Coastal wetlands of the United States: an accounting of a valuable natural resource. Strategic Assessment Branch, Ocean Assessments Division, Office of Oceanography and Marine Assessment, National Ocean Service, National Oceanic and Atmospheric Administration, Washington, DC, USA.Google Scholar
  47. Finlayson, C. M., N. C. Davidson, A. G. Spiers, and N. J. Stevenson. 1999. Global wetland inventory-current status and future priorities. Marine Freshwater Research 50: 717–727.CrossRefGoogle Scholar
  48. Fletcher, S. E. M., P. P. Tans, L. M. Bruhwiler, J. B. Miller, and M. Heimann. 2004b. CH sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 1. Inverse modeling of source processes. Global Biogeochemical Cycles 18:doi:10.1029/2004GB002223.Google Scholar
  49. Fletcher, S. E. M., P. P. Tans, L. M. Bruhwiler, J. B. Miller, and M. Heimann. 2004b. CH4 sources estimated from atmospheric observations of CH4 and its 13C/12C isotopic ratios: 2. Inverse modeling of CH4 fluxes from geographical regions. Global Biogeochemical Cycles 18:doi:10.1029/2004GB002224.Google Scholar
  50. Frayer, W. E., T. J. Monahan, D. C. Bowden, and F. A. Graybill. 1983. Status and Trends of Wetlands and Deepwater Habitats in the Conterminous United States, 1950s to 1970s. Dept. of Forest and Wood Sciences, Colorado State University, Fort Collins, CO, USA.Google Scholar
  51. Freeman, C., N. Fenner, N. J. Ostie, H. Kang, D. J. Dowrick, B. Reynolds, M. A. Lock, D. Sleep, S. Hughes, and J. Hudson. 2004. Export of dissolved organic carbon from peatlands under elevated carbon dioxide levels. Nature 430: 195–198.PubMedCrossRefGoogle Scholar
  52. Frolking, S. and P. Crill. 1994. Climate controls on temporal variability of methane flux from a poor fen in southeastern New Hampshire: measurement and modeling. Global Biogeochemical Cycles 8: 385–397.CrossRefGoogle Scholar
  53. Frolking, S., N. Roulet, and J. Fuglestvedt. 2006. How northern peatlands influence the earth’s radiative budget: Sustained methane emission versus sustained carbon sequestration. JGR-Biogeosciences III: G01008, doi:01010.01029/02005JG000091.CrossRefGoogle Scholar
  54. Frolking, S., N. T. Roulet, T. R. Moore, P. M. Lafleur, J. L. Bubier, and P. M. Crill. 2002. Modeling seasonal to annual carbon balance of Mer Bleue Bog, Ontario, Canada. Global Biogeochemical Cycles 16, 10.1029.2001GB00147, 02002.Google Scholar
  55. Gauci, V., E. Matthews, N. Dise, B. Walter, D. Koch, G. Granberg, and M. Vile. 2004. Sulfur pollution suppression of the wetland methane source in the 20th and 21st centuries. Proceeding of the National Academy of Sciences, USA 101: 12583–12587.CrossRefGoogle Scholar
  56. Gedney, N., P. M. Cox, and C. Huntingford. 2004. Climate feedbacks from methane emissions. Geophysical Research Letters 31: L20503, doi:20510.21029/22004GL020919.CrossRefGoogle Scholar
  57. Gorham, E. 1991. Northern peatlands: role in the carbon cycle and probable responses to climatic warming. Ecological Applications 1: 182–195.CrossRefGoogle Scholar
  58. Gunnison, D., R. L. Chen, and J. M. Brannon. 1983. Relationship of Materials in Flooded Soils and Sediments to the Water-Quality of Reservoirs.1. Oxygen-Consumption Rates. Water Research 17: 1609–1617.CrossRefGoogle Scholar
  59. Hall, J. V., W. E. Frayer, and B. O. Wilen. 1994. Status of Alaska Wetlands. U.S. Fish and Wildlife Service, Anchorage, AK, USA.Google Scholar
  60. Halsey, L. A., D. H. Vitt, and L. D. Gignac. 2000. Sphagnumdominated peatlands in North America since the last glacial maximum: their occurrence and extent. The Bryologist 103: 334–352.CrossRefGoogle Scholar
  61. Hanson, A. R. and L. Calkins. 1996. Wetlands of the Maritime Provinces: Revised Documentation for the Wetlands Inventory. Canadian Wildlife Service, Atlantic Region, Sackville, New Brunswick, Canada. Technical Report No. 267.Google Scholar
  62. Happell, J. D., J. P. Chanton, G. J. Whiting, and W. J. Showers. 1993. Stable isotopes as tracers of methane dynamics in Everglades marshes with and without active populations of methane oxidizing bacteria. Journal of Geophysical Research 98: 14771–14782.CrossRefGoogle Scholar
  63. Harden, J. W., J. M. Sharpe, W. J. Parton, D. S. Ojima, T. L. Fries, T. G. Huntington, and S. M. Dabney. 1999. Dynamic replacement and loss of soil carbon on eroding cropland. Global Biogeochemical Cycles 13: 885–901.CrossRefGoogle Scholar
  64. Harriss, R. C. and D. I. Sebacher. 1981. Methane flux in forested freshwater swamps of the southeastern United States. Geophysical Research Letters 8: 1002–1004.CrossRefGoogle Scholar
  65. Harriss, R. C., D. I. Sebacher, K. B. Bartlett, D. S. Bartlett, and P. M. Crill. 1988. Sources of atmospheric methane in the south Florida environment. Global Biogeochemical Cycles 2: 231–243.CrossRefGoogle Scholar
  66. Harriss, R. C., D. I. Sebacher, and F. P. Day, Jr. 1982. Methane flux in the Great Dismal Swamp. Nature 297: 673–674.CrossRefGoogle Scholar
  67. Hines, M. E. and K. N. Duddleston. 2001. Carbon flow to acetate and C1 compounds in northern wetlands. Geophysical Research Letters 28: 4251–4254.CrossRefGoogle Scholar
  68. Hoosbeek, M. R., M. Lukac, D. van Dam, D. L. Godbold, E. J. Velthorst, F. A. Biondi, A. Peressotti, M. F. Cotrufo, P. de Angelis, and G. Scarascia-Mugnozza. 2004. More new carbon in the mineral soil of a poplar plantation under Free Air Carbon Enrichment (POPFACE): Cause of increased priming effect? Global Biogeochemical Cycles 18: GB1040.CrossRefGoogle Scholar
  69. Hoosbeek, M. R., N. van Breeman, F. Berendse, P. Brosvernier, H. Vasander, and B. Wallén. 2001. Limited effect of increased atmospheric CO2 concentration on ombrotrophic bog vegetation. New Phytologist 150: 459–463.CrossRefGoogle Scholar
  70. Hussein, A. H., M. C. Rabenhorst, and M. L. Tucker. 2004. Modeling of carbon sequestration in coastal marsh soils. Soil Science Society of America Journal 68: 1786–1795.Google Scholar
  71. Johnston, C. A., S. D. Bridgham, and J. P. Schubauer-Berigan. 2001. Nutrient dynamics in relation to geomorphology of riverine wetlands. Soil Science Society of America Journal 65: 557–577.CrossRefGoogle Scholar
  72. Joosten, H. and D. Clarke. 2002. Wise Use of Mires and Peatlands — Background Principles including a Framework for Decision-Making. International Mire Conservation Group and International Peat Society, Saarijärvi, Finland.Google Scholar
  73. Kearney, M. S., A. S. Rogers, J. R. G. Townshend, E. Rizzo, D. Stutzer, J. C. Stevenson, and K. Sundborg. 2002. Landsat imagery shows decline of coastal marshes in Chesapeake and Delaware Bays. Eos 83: 173.CrossRefGoogle Scholar
  74. Kearney, M. S. and J. C. Stevenson. 1991. Island land loss and marsh vertical accretion rate evidence for historical sea-level changes in Chesapeake Bay. Journal of Coastal Research 7: 403–415.Google Scholar
  75. Keller, J. K., S. D. Bridgham, C. T. Chapin, and C. M. Iversen. 2005. Limited effects of six years of fertilization on carbon mineralization dynamics in a Minnesota fen. Soil Biology and Biochemistry 37: 1197–1204.CrossRefGoogle Scholar
  76. Keller, J. K., A. K. Reist, S. D. Bridgham, L. E. Kellogg, and C. M. Iversen. 2006. Nutrient control of microbial carbon cycling along an ombrotrophic-minerotrophic peatlands gradient. Journal of Geophysical Research-Biogeosciences:111, G03006, doi:10.1029/2005JG000152.Google Scholar
  77. Kelly, C. A., C. S. Martens, and W. Ussier III. 1995. Methane dynamics across a tidally flooded riverbank margin. Limnology and Oceanography 40: 1112–1129.CrossRefGoogle Scholar
  78. Kelly, C. A., J. W. M. Rudd, R. A. Bodaly, N. T. Roulet, V. L. StLouis, A. Heyes, T. R. Moore, S. Schiff, R. Aravena, K. J. Scott, B. Dyck, R. Harris, B. Warner, and G. Edwards. 1997. Increase in fluxes of greenhouse gases and methyl mercury following flooding of an experimental reservoir. Environmental Science and Technology 31: 1334–1344.CrossRefGoogle Scholar
  79. Kim, H. Y., M. Lieffering, S. Miura, K. Kobayashi, and M. Okada. 2001. Growth and nitrogen uptake of CO2-enriched rice under field conditions. New Phytologist 150: 223–229.CrossRefGoogle Scholar
  80. Kim, J., S. B. Verma, and D. P. Billesbach. 1998. Seasonal variation in methane emission from a temperate Phragmitesdominated marsh: effect of growth stage and plant-mediated transport. Global Change Biology 5: 443–440.Google Scholar
  81. King, G. M. and W. J. Wiebe. 1978. Methane release from soils of a Georgia salt marsh. Geochimica et Cosmochimica Acta 42: 343–348.CrossRefGoogle Scholar
  82. Kivinen, E. and P. Pakarinen. 1981. Geographical distribution of peat resources and major peatland complex types in the world. Annales Academiae Scientiarum Fennicae Series A. III. 132: 1–28.Google Scholar
  83. Kristensen, E., S. I. Ahmed, and A. H. Devol. 1995. Aerobic and anaerobic decomposition of organic matter in marine sediment: Which is fastest? Limnology and Oceanography 40: 1430–1437.CrossRefGoogle Scholar
  84. Lansdown, J., P. Quay, and S. King. 1992. CH4 production via CO2 reduction in a temperate bog: a source of 13C-depleted CH4. Geochimica et Comsochimica Acta 56: 3493–3503.CrossRefGoogle Scholar
  85. Lappalainen, E. 1996. General review on world peatland and peat resources. p. 53–56. In E. Lappalainen (ed.) Global Peat Resources. International Peat Society and Geological Survey of Finland, Jyskä, Finland.Google Scholar
  86. Lichter, J., S. H. Barron, C. E. Bevacqua, A. C. Finzi, K. F. Irving, E. A. Stemmler, and W. H. Schlesinger. 2005. Soil carbon sequestration and turnover in a pine forest after six years of atmospheric CO2 enrichment. Ecology 86: 1835–1847.CrossRefGoogle Scholar
  87. Lugo, A. E. and S. C. Snedaker. 1974. The ecology of mangroves. Annual Review of Ecology and Systematics 5: 39–64.CrossRefGoogle Scholar
  88. Lynch-Stewart, P., I. Kessel-Taylor, and C. Rubec. 1999. Wetlands and Government: Policy and Legislation for Wetland Conservation in Canada. North American Wetlands Conservation Council (Canada) No. 1999–1.Google Scholar
  89. Maltby, E. and P. Immirzi. 1993. Carbon dynamics in peatlands and other wetland soils, regional and global perspectives. Chemosphere 27: 999–1023.CrossRefGoogle Scholar
  90. Malterer, T. J. 1996. Peat resources of the United States. p. 253–260. In E. Lappalainen (ed.) Global Peat Resources. International Peat Society and Geological Survey of Finland, Jyskä, Finland.Google Scholar
  91. Marsh, A. S., D. P. Rasse, B. G. Drake, and J. P. Megonigal. 2005. Effect of elevated CO2 on carbon pools and fluxes in a brackish marsh. Estuaries 28: 694–704.CrossRefGoogle Scholar
  92. Matthews, E. and I. Fung. 1987. Methane emission from natural wetlands: Global distribution, area, and environmental characteristics of sources. Global Biogeochemical Cycles 1: 61–86.CrossRefGoogle Scholar
  93. Meade, R. H., T. R. Yuzyk, and T. J. Day. 1990. Movement and storage of sediments in rivers of the United States and Canada. p. 255–280. In M. G. Wolman and H. C. Riggs (eds.) Surface Water Hydrology, Geol. of N. Am., 0–1. Geological Society of American, Boulder, CO, USA.Google Scholar
  94. Megonigal, J. P. and W. H. Schlesinger. 2002. Methane-limited methanotrophy in tidal freshwater swamps. Global Biogeochemical Cycles 16: 1088, doi:1010.1029/2001GB001594, 002002.CrossRefGoogle Scholar
  95. Megonigal, J. P., C. D. Vann, and A. A. Wolf. 2005. Flooding constraints on tree (Taxodium distichum) and herb growth responses to elevated CO2. Wetlands 25: 230–238.CrossRefGoogle Scholar
  96. Mendelssohn, I. A. and K. L. McKee. 2000. Saltmarshes and mangroves. p. 501–536. In M. G. Barbour and W. D. Billings (eds.) North American Terrestrial Vegetation. Cambridge University Press, Cambridge, UK.Google Scholar
  97. Miller, D. N., W. C. Ghiorse, and J. B. Yavitt. 1999. Seasonal patterns and controls on methane and carbon dioxide fluxes in forested swamp pools. Geomicrobiology Journal 16: 325–331.CrossRefGoogle Scholar
  98. Mitra, S., R. Wassmann, and P. L. G. Vlek. 2005. An appraisal of global wetland area and its organic carbon stock. Current Science 88: 25–35.Google Scholar
  99. Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands. Van Nostrand Reinhold, New York, NY, USA.Google Scholar
  100. Moore, T. R. 1997. Dissolved organic carbon: sources, sinks, and fluxes and role in the soil carbon cycle. p. 281–292. In R. Lal, J. M. Kimble, R. F. Follett, and B. A. Stewart (eds.) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, FL, USA.Google Scholar
  101. Moore, T. R. and N. T. Roulet. 1995. Methane emissions from Canadian peatlands. p. 153–164. In R. Lal, J. Kimble, E. Levine, and B. A. Stewart (eds.) Soils and Global Change. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  102. Moore, T. R., N. T. Roulet, and J. M. Waddington. 1998. Uncertainty in predicting the effect of climatic change on the carbon cycling of Canadian peatlands. Climatic Change 40: 229–245.CrossRefGoogle Scholar
  103. Moser, M., C. Prentice, and S. Frazier. 1996. A global overview of wetland loss and degradation. in Ramsar 6th Meeting of the Conference of the Contracting Parties in Brisbane. Australia.Google Scholar
  104. Naiman, R. J., T. Manning, and C. A. Johnston. 1991. Beaver population fluctuations and tropospheric methane emissions in boreal wetlands. Biogeochemistry 12: 1–15.CrossRefGoogle Scholar
  105. Najjar, R. G., H. A. Walker, P. J. Anderson, E. J. Barron, R. J. Bord, J. R. Gibson, V. S. Kennedy, C. G. Knight, J. P. Megonigal, R. E. O’Conner, C. D. Polsky, N. P. Psuty, B. A. Richards, L. G. Sorenson, E. M. Steele, and R. S. Swanson. 2000. The potential impacts of climate change on the mid-Atlantic coastal region. Climate Research 14: 219–233.CrossRefGoogle Scholar
  106. National Research Council. 2001. Compensating for Wetland Losses under the Clean Water Act. National Academy Press, Washington, DC, USA.Google Scholar
  107. National Wetlands Working Group. 1988. Wetlands of Canada. Sustainable Development Branch, Environment Canada, Ottawa, Ontario, and Polyscience Publications, Montreal, Quebec, Canada.Google Scholar
  108. Neff, J. C., W. D. Bowman, E. A. Holland, M. C. Fisk, and S. K. Schmidt. 1994. Fluxes of nitrous oxide and methane from nitrogen-amended soils in a Colorado alpine ecosystem. Biogeochemistry 27: 23–33.CrossRefGoogle Scholar
  109. Neubauer, S. C., W. D. Miller, and I. C. Anderson. 2000. Carbon cycling in a tidal freshwater marsh ecosystem: a carbon gas flux study. Marine Ecology Progress Series 199: 13–30.CrossRefGoogle Scholar
  110. NRCS. 1999. Soil Taxonomy: A Basic System of Soil Classification for Making and Interpreting Soil Surveys, second edition. Natural Resources Conservation Service, Washington, DC, USA.Google Scholar
  111. Odum, W. E., T. J. Smith III, J. K. Hoover, and C. C. McIvor. 1984. The ecology of tidal freshwater marshes of the United States east coast: a community profile. U.S. Fish and Wildlife Service, Washington, DC, USA. FWS/OBS-83/17.Google Scholar
  112. OECD. 1996. Guidelines for aid agencies for improved conservation and sustainable use of tropical and subtropical wetlands. Organization for Economic Co-operation and Development, Paris, France.Google Scholar
  113. Oechel, W. C., S. Cowles, N. Grulke, S. J. Hastings, B. Lawrence, T. Prudhomme, G. Riechers, B. Strain, D. Tissue, and G. Vourlitis. 1994. Transient nature of CO2 fertilization in Arctic tundra. Nature 371: 500–503.CrossRefGoogle Scholar
  114. Olmsted, I. 1993. Wetlands of Mexico. p. 637–677. In D. F. Whigham, D. Dykjová, and S. Hejný (eds.) Wetlands of the World. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  115. Ovenden, L. 1990. Peat accumulation in northern wetlands. Quaternary Research 33: 377–386.CrossRefGoogle Scholar
  116. Petit, J. R., J. Jouzel, D. Raynaud, N. I. Barkov, J. M. Barnola, I. Basile, M. Bender, J. Chappellaz, M. Davis, G. Delaygue, M. Delmotte, V. M. Kotlyakov, M. Legrand, V. Y. Lipenkov, C. Lorius, L. Pepin, C. Ritz, E. Saltzman, and M. Stievenard. 1999. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 399: 429–436.CrossRefGoogle Scholar
  117. Pulliam, W. M. 1993. Carbon dioxide and methane exports from a southeastern floodplain swamp. Ecological Monographs 63: 29–53.CrossRefGoogle Scholar
  118. Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T. Nakajima, G. Y. Shi, and S. Solomon. 2001. Radiative forcing of climate change. p. 349–416. In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  119. Rasse, D. P., G. Peresta, and B. G. Drake. 2005. Seventeen years of elevated CO2 exposure in a Chesapeake Bay wetland: sustained but contrasting responses of plant growth and CO2 uptake. Global Change Biology 11: 369–377.CrossRefGoogle Scholar
  120. Rieger, S., D. B. Schoephoster, and C. E. Furbush. 1979. Exploratory Soil Survey of Alaska. Soil Conservation Service, Anchorage, AK, USA.Google Scholar
  121. Robinson, S. D. and T. R. Moore. 1999. Carbon and peat accumulation over the past 1200 years in a landscape with discontinuous permafrost, northwestern Canada. Global Biogeochemical Cycles 13: 591–602.CrossRefGoogle Scholar
  122. Roulet, N. T. 2000. Peatlands, carbon storage, greenhouse gases, and the Kyoto Protocol: prospects and significance for Canada. Wetlands 20: 605–615.CrossRefGoogle Scholar
  123. Rubec, C. 1996. The status of peatland resources in Canada. p. 243–252. In E. Lappalainen (ed.) Global Peat Resources. International Peat Society and Geological Survey of Finland, Jyskä, Finland.Google Scholar
  124. Schipper, L. A. and K. R. Reddy. 1994. Methane production and emissions from four reclaimed and pristine wetlands of southeastern United States. Soil Science Society of America 58: 1270–1275.CrossRefGoogle Scholar
  125. Shannon, R. D. and J. R. White. 1994. A three year study of controls on methane emissions from two Michigan peatlands. Biogeochemistry 27: 35–60.CrossRefGoogle Scholar
  126. Shurpali, N. J. and S. B. Verma. 1998. Micrometeorological measurements of methane flux in a Minnesota peatland during two growing seasons. Biogeochemistry 40: 1–15.CrossRefGoogle Scholar
  127. Smith, L. K. and W. M. Lewis, Jr. 1992. Seasonality of methane emissions from five lakes and associated wetlands of the Colorado Rockies. Global Biogeochemical Cycles 6: 323–338.CrossRefGoogle Scholar
  128. Smith, S. V., W. H. Renwick, R. W. Buddemeier, and C. J. Crossland. 2001. Budgets of soil erosion and deposition for sediments and sedimentary organic carbon across the conterminous United States. Global Biogeochemical Cycles 15: 697–707.CrossRefGoogle Scholar
  129. Spalding, M., F. Blasco, and C. Field (eds.) 1997. World Mangrove Atlas. The International Society for Mangrove Ecosystems, Okinawa, Japan.Google Scholar
  130. Spiers, A. G. 1999. Review of international/continental wetland resources. Supervising Scientist, Canberra, Australia. Supervising Scientist Report 144.Google Scholar
  131. Stallard, R. F. 1998. Terrestrial sedimentation and the carbon cycle: Coupling weathering and erosion to carbon burial. Global Biogeochemical Cycles 12: 231–257.CrossRefGoogle Scholar
  132. Strack, M., J. M. Waddington, and E.-S. Tuittila. 2004. Effect of water table drawdown on northern peatland methane dynamics: Implications for climate change. Global Biogeochemical Cycles 18: GB4003, doi:4010.1029/2003GB002209, 002004.CrossRefGoogle Scholar
  133. Tarnocai, C. 1998. The amount of organic carbon in various soil orders and ecological provinces in Canada. p. 81–92. In R. Lal, J. M. Kimble, R. F. Follett, and B. A. Stewart (eds.) Soil Processes and the Carbon Cycle. CRC Press, Boca Raton, FL, USA.Google Scholar
  134. Tarnocai, C., I. M. Kettles, and B. Lacelle. 2005. Peatlands of Canada. Ottawa. Agriculture and Agri-Food Canada, Research Branch, Ottawa, ON, Canada.Google Scholar
  135. Tissue, D. T. and W. C. Oechel. 1987. Response of Eriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68: 401–410.CrossRefGoogle Scholar
  136. Tolonen, K. and J. Turunen. 1996. Accumulation rates of carbon in mires in Finland and implications for climactic change. Holocene 6: 171–178.CrossRefGoogle Scholar
  137. Trettin, C. C. and M. F. Jurgensen. 2003. Carbon cycling in wetland forest soils. p. 311–331. In J. M. Kimble, L. S. Heatth, R. A. Birdsey, and R. Lal (eds.) The Potential of U.S. Forest Soils to Sequester Carbon and Mitigate the Greenhouse Effect. CRC Press, Boca Raton, FL, USA.Google Scholar
  138. Trimble, S. W. and P. Crosson. 2000. Land use — US soil erosion rates — Myth and reality. Science 289: 248–250.PubMedCrossRefGoogle Scholar
  139. Trumbore, S. E. and J. W. Harden. 1997. Accumulation and turnover of carbon in organic and mineral soils of the BOREAS northern study area. Journal of Geophysical Research 102: 28,817–28,830.CrossRefGoogle Scholar
  140. Turetsky, M. R., B. D. Amiro, E. Bosch, and J. S. Bhatti. 2004. Historical burn area in western Canadian peatlands and its relationship to fire weather indices. Global Biogeochemical Cycles 18: GB4014, doi:1029/2004GB002222, 002004.CrossRefGoogle Scholar
  141. Turetsky, M. R., R. K. Wieder, L. A. Halsey, and D. Vitt. 2002. Current distribution and diminishing peatland carbon sink. Geophysical Research Letters 29: 10.1029/2001GL014000, 012002.CrossRefGoogle Scholar
  142. Turner, R. E. 1997. Wetland loss in the Northern Gulf of Mexico: multiple working hypotheses. Estuaries 20: 1–13.CrossRefGoogle Scholar
  143. Turunen, J., N. T. Roulet, and T. R. Moore. 2004. Nitrogen deposition and increased carbon accumulation in ombrotrophic peatlands in eastern Canada. Global Biogeochemical Cycles 18: GB3002, doi:3010.1029/2003GB002154.CrossRefGoogle Scholar
  144. Twilley, R. R., R. H. Chen, and T. Hargis. 1992. Carbon sinks in mangroves and their implications to carbon budget of tropical coastal ecosystems. Water, Air and Soil Pollution 64: 265–288.CrossRefGoogle Scholar
  145. Updegraff, K., S. D. Bridgham, J. Pastor, P. Weishampel, and C. Harth. 2001. Response of CO2 and CH4 emissions in peatlands to warming and water-table manipulation. Ecological Applications 11: 311–326.Google Scholar
  146. Valiela, I., J. L. Bowen, and J. K. York. 2001. Mangrove forests: One of the world’s threatened major tropical environments. BioScience 51: 807–815.CrossRefGoogle Scholar
  147. Vann, C. D. and J. P. Megonigal. 2003. Elevated CO2 and water depth regulation of methane emissions: comparison of woody and non-woody wetland plant species. Biogeochemistry 63: 117–134.CrossRefGoogle Scholar
  148. Vile, M. A., S. D. Bridgham, R. K. Wieder, and M. Nov/’ak. 2003. Atmospheric sulfur deposition alters pathways of gaseous carbon production in peatlands. Global Biogeochemical Cycles 17: 1058–1064.CrossRefGoogle Scholar
  149. Vitt, D. H., L. A. Halsey, I. E. Bauer, and C. Campbell. 2000. Spatial and temporal trends in carbon storage of peatlands of continental western Canada through the Holocene. Canadian Journal of Earth Sciences 37: 683–693.CrossRefGoogle Scholar
  150. Vitt, D. H., L. A. Halsey, and S. C. Zoltai. 1994. The bog landforms of continental western Canada in relation to climate and permafrost patterns. Arctic and Alpine Research 26: 1–13.CrossRefGoogle Scholar
  151. Walter, K. M., S. A. Zimov, J. P. Chaton, D. Verbyla, and F. S. Chapin III. 2006. Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming. Nature 443: 71–75.PubMedCrossRefGoogle Scholar
  152. Wang, J. S., J. A. Logan, M. B. McElroy, B. N. Duncan, I. A. Megretskaia, and R. M. Yantosca. 2004. A 3-D model analysis of the slowdown and interannual variability in the methane growth rate from 1988 to 1997. Global Biogeochemical Cycles 18: GB3011, doi:101029/102003GB002180.CrossRefGoogle Scholar
  153. Watson, R. T., I. R. Noble, B. Bolin, N. H. Ravindranath, D. J. Verardo, and D. J. Dokken. 2000. IPCC Special Report on Land Use, Land-Use Change and Forestry. Cambridge University Press, Cambridge, UK.Google Scholar
  154. Webb, R. S. and T. Webb III. 1988. Rates of sediment accumulation in pollen cores from small lakes and mires of eastern North America. Quaternary Research 30: 284–297.CrossRefGoogle Scholar
  155. WEC. 2001. Survey of Energy Resources. http://www.worldenergy. org/wec-geis/publications/reports/ser/peat/peat.asp.Google Scholar
  156. Werner, C., K. Davis, P. Bakwin, C. Yi, D. Hurst, and L. Lock. 2003. Regional-scale measurements of CH4 exchange from a tall tower over a mixed temperate/boreal lowland and wetland forest. Global Change Biology 9: 1251–1261.CrossRefGoogle Scholar
  157. West, A. E., P. D. Brooks, M. C. Fisk, L. K. Smith, E. A. Holland, C. H. Jaeger III, S. Babcock, R. S. Lai, and S. K. Schmidt. 1999. Landscape patterns of CH4 fluxes in an alpine tundra ecosystem. Biogeochemistry 45: 243–264.Google Scholar
  158. Whiting, G. J. and J. P. Chanton. 1993. Primary production control of methane emissions from wetlands. Nature 364: 794–795.CrossRefGoogle Scholar
  159. Wickland, K. P., R. G. Striegl, S. K. Schmidt, and M. A. Mast. 1999. Methane flux in subalpine wetland and unsaturated soils in the southern Rocky Mountains. Global Biogeochemical Cycles 13: 101–113.CrossRefGoogle Scholar
  160. Wilson, J. O., P. M. Crill, K. B. Bartlett, D. I. Sebacher, R. C. Harriss, and R. L. Sass. 1989. Seasonal variation of methane emissions from a temperate swamp. Biogeochemistry 8: 55–71.CrossRefGoogle Scholar
  161. Wylynko, D. (ed.) 1999. Prairie wetlands and carbon sequestration: assessing sinks under the Kyoto Protocol. Institute for Sustainable Development, Ducks Unlimited Canada, and Wetlands International, Winnipeg, Manitoba, Canada.Google Scholar
  162. Yavitt, J. B. 1997. Methane and carbon dioxide dynamics in Typha latifolia (L.) wetlands in central New York state. Wetlands 17: 394–406.CrossRefGoogle Scholar
  163. Yavitt, J. B., R. K. Wieder, and G. E. Lang. 1993. CO2 and CH4 dynamics of a Sphagnum-dominated peatland in West Virginia. Global Biogeochemical Cycles 7: 259–274.CrossRefGoogle Scholar
  164. Yavitt, S. B., G. E. Yang, and A. J. Sexstone. 1990. Methane fluxes in wetland and forest soils, heaver ponds, and low order streams of temperate forest ecosystem. Journal of Geophysical Research 95: 22463–22474.CrossRefGoogle Scholar
  165. Zedler, J. B. and S. Kercher. 2005. Wetland resources: status, trends, ecosystem services, and restorability. Annual Review of Environmental Resources 30: 39–74.CrossRefGoogle Scholar
  166. Zhuang, Q., J. M. Melillo, D. W. Kicklighter, R. G. Prin, A. D. McGuire, P. A. Steudler, B. S. Felzer, and S. Hu. 2004. Methane fluxes between terrestrial ecosystems and the atmosphere at northern high latitudes during the past century: A retrospective analysis with a process-based biogeochemistry model. Global Biogeochemical Cycles 18: GB 3010, doi:3010.1029/2004GB002239.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2006

Authors and Affiliations

  • Scott D. Bridgham
    • 1
  • J. Patrick Megonigal
    • 2
  • Jason K. Keller
    • 2
  • Norman B. Bliss
    • 3
  • Carl Trettin
    • 4
  1. 1.Center for Ecology and Evolutionary BiologyUniversity of OregonEugeneUSA
  2. 2.Smithsonian Environmental Research CenterEdgewaterUSA
  3. 3.SAIC, USGS Center for Earth Resources Observation and ScienceSioux FallsUSA
  4. 4.Center for Forested Wetland ResearchUSDA Forest ServiceCharlestonUSA

Personalised recommendations