Skip to main content
Log in

Influence of landscape structure on mosquitoes (Diptera: Culicidae) and dytiscids (Coleoptera: Dytiscidae) at five spatial scales in Swedish wetlands

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Patterns of species diversity and community structure depend on scales larger than just a single habitat and might be influenced by the surrounding landscape. We studied the response of two insect families, mosquitoes (Diptera: Culicidae) and dytiscids (Coleoptera: Dytiscidae), to landscape variables at five spatial scales. We studied adult mosquito and dytiscid abundance, diversity, and species assemblages in relation to water permanence (area of permanent water bodies versus temporary wetlands) and forest cover (area covered by forest versus open land) within nested circles of 100 to 3000 m around trap sites in four wetlands in southern Sweden and in five wetlands in central Sweden. We found that mosquito abundance was greatest in areas with plentiful forest cover and a high proportion of temporary water, while most dytiscids favored open areas with a high proportion of permanent wetlands. However, diversity of both mosquitoes and dytiscids was positively correlated with high permanence and little forest cover. Mosquito species assemblages were mainly influenced by forest cover at a large spatial scale, whereas permanence was more important at local scales. Dytiscid species assemblages were mainly influenced by water permanence, especially at intermediate spatial scales. These results can be explained by the flight capability and dispersal behavior of mosquito and dytiscid species. The observed landscape associations of mosquitoes and dytiscids could be useful when creating new wetlands. Mosquito colonization could be reduced by creating permanent wetlands in an open landscape, which would favor colonization by dytiscids, a potential predator of mosquito larvae, while also supporting the diversity of both taxa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Literature Cited

  • Baev, P. V. and L. D. Penev. 1995. BIODIV. Program for calculating biological diversity parameters, similarity, niche overlap, and cluster analysis. Exeter Software, Setauket, NY, USA.

    Google Scholar 

  • Becker, N. 1989. Life strategies of mosquitoes as an adaptation to their habitats. Bulletin of the Society for Vector Ecology 14: 6–25.

    Google Scholar 

  • Becker, N. and A. Kaiser. 1995. Die Culicidenvorkommen in den Rheinauen des Oberrheingebiets mit besonderer Berücksichtigung von Uranotaenia (Culicidae, Diptera)—einer neuen Stechmückengattung für Deutschland. Mitteilungen der Deutschen Gesellschaft für allgemeine und angewandte Entomologie 10: 407–413.

    Google Scholar 

  • Bidlingmayer, W. L. 1985. The measurement of adult mosquito population changes—some considerations. Journal of the American Mosquito Control Association 1: 328–348.

    CAS  PubMed  Google Scholar 

  • Brust, R. A. 1980. Dispersal behavior of adult Aedes sticticus and Aedes vexans (Diptera: Culicidae) in Manitoba. The Canadian Entomologist 112: 31–42.

    Article  Google Scholar 

  • Cederlund, G. N. and H. Okarina. 1988. Home range and habitat use of adult female moose. Journal of Wildlife Management 52: 336–343.

    Article  Google Scholar 

  • Gillies, M. T. and T. J. Wilkes. 1970. The range of attraction of single baits for some West African mosquitoes. Bulletin of Entomological Research 60: 225–235.

    Article  Google Scholar 

  • Gillies, M. T. and T. J. Wilkes. 1972. The range of attraction of animal baits and carbon dioxide for mosquitoes. Studies in a freshwater area of West Africa. Bulletin of Entomological Research 61: 389–405.

    Article  Google Scholar 

  • Gutsevich, A. V., A. S. Monchadskii, and A. A. Shtakel’berg. 1974. Diptera. Mosquitoes, Family Culicidae. Keter Press, Jerusalem, Israel.

    Google Scholar 

  • Haslett, J. R. 2001. Biodiversity and conservation of Diptera in heterogenous land mosaics: a fly’s eye view. Journal of Insect Conservation 5: 71–75.

    Article  Google Scholar 

  • Hilsenhoff, W. L. 1991. Comparison of bottle traps with a D-frame net for collecting adults and larvae of Dytiscidae and Hydrophilidae (Coleoptera). The Coleopterists Bulletin 45: 143–146.

    Google Scholar 

  • Hilsenhoff, W. L. and B. H. Tracy. 1985. Techniques for collecting water beetles from lentic habitats. Proceedings of the Academy of Natural Sciences of Philadelphia 137: 8–11.

    Google Scholar 

  • Horsfall, W. R., H. W. J. Fowler, L. J. Moretti, and J. R. Larsen. 1973. Bionomics and Embryology of the Inland Flood Water Mosquito Aedes vexans. University of Illinois Press, Urbana, IL, USA.

    Google Scholar 

  • Jackson, D. J. 1952. Observations on the capacity for flight of water beetles. Proceedings of the Royal Entomological Society of London (A) 27: 57–70.

    Google Scholar 

  • Jackson, D. J. 1956. Observations on flying and flightless water beetles. Journal of the Linnean Society of London/Zoology 43: 18–42.

    Article  Google Scholar 

  • Jenkins, D. W. and C. C. Hassett. 1951. Dispersal and flight range of subarctic mosquitoes marked with radiophosphorus. Canadian Journal of Zoology 29: 178–187.

    Article  Google Scholar 

  • Joslyn, D. J. and D. Fish. 1986. Adult dispersal of Ae. communis using Giemsa self-marking. Journal of the American Mosquito Control Association 2: 89–90.

    CAS  PubMed  Google Scholar 

  • Kareiva, P. and U. Wennergren. 1995. Connecting landscape patterns to ecosystem and population processes. Nature 373: 299–302.

    Article  CAS  Google Scholar 

  • Keddy, P. A. 2000. Wetland Ecology. Principles and Conservation. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Lundkvist, E., J. Landin, M. Jackson, and C. Svensson. 2003. Diving beetles (Dytiscidae) as predators of mosquito larvae (Culicidae) in field experiments and in laboratory tests of prey preference. Bulletin of Entomological Research 93: 219–226.

    Article  CAS  PubMed  Google Scholar 

  • Lundkvist, E., J. Landin, and F. Karlsson. 2002. Dispersing diving beetles (Dytiscidae) in agricultural and urban landscapes in south-eastern Sweden. Annales Zoologici Fennici 39: 109–123.

    Google Scholar 

  • Lundkvist, E., J. Landin, and P. Milberg. 2001. Diving beetle (Dytiscidae) assemblages along environmental gradients in an agricultural landscape in southeastern Sweden. Wetlands 21: 48–58.

    Article  Google Scholar 

  • Magurran, A. E. 2004. Measuring Biological Diversity. Blackwell Publishing, Oxford, UK.

    Google Scholar 

  • MapInfo Corporation. 1985–2002. MapInfo Professional 7.0. New York, NY, USA.

  • McIver, S. B. and P. E. McElligott. 1989. Effects of release rates on the range of attraction of carbon dioxide to some southwestern Ontario mosquito species. Journal of the American Mosquito Control Association 5: 6–9.

    CAS  PubMed  Google Scholar 

  • Miller, J. N., R. P. Brooks, and M. J. Croonquist. 1997. Effects of landscape patterns on biotic communities. Landscape Ecology 12: 137–153.

    Article  Google Scholar 

  • Mohrig, W. 1969. Die Culiciden Deutschlands. Untersuchungen zur Taxonomie, Biologie und Ökologie der einheimischen Stechmücken. VEB G. Fischer Verlag, Jena, Germany.

    Google Scholar 

  • Nielsen, L. T. 1957. Notes on the flight ranges of Rocky Mountain Mosquitoes of the genus Aedes. Utah Academy Proceedings 34: 27–29.

    Google Scholar 

  • Nilsson, A. N. and M. Holmen. 1995. The Aquatic Adephaga (Coleoptera) of Fennoscandia and Denmark.II. Dytiscidae. E. J. Brill., Leiden, The Netherlands.

    Google Scholar 

  • Nilsson, A. N. and O. Söderström. 1988. Larval consumption rates, interspecific predation, and local guild composition of egg-overwintering Agabus (Coleoptera, Dytiscidae) species in vernal ponds. Oecologia 76: 131–137.

    Google Scholar 

  • Nilsson, A. N. and B. W. Svensson. 1995. Assemblages of dytiscid predators and culicid prey in relation to environmental factors in natural and clear-cut boreal swamp forest pools. Hydrobiologia 308: 183–196.

    Article  Google Scholar 

  • Onyeka, J. O. A. 1983. Studies on the natural predators of Culex pipiens L. and C. torrentium Martini (Diptera: Culicidae) in England. Bulletin of Entomological Research 73: 185–194.

    Article  Google Scholar 

  • Petric, D., M. Zgomba, M. Ludwig, and N. Becker. 1995. Dependence of CO2-baited suction trap captures on temperature-variations. Journal of the American Mosquito Control Association 11: 6–10.

    CAS  PubMed  Google Scholar 

  • Pickett, S. T. A. and M. L. Cadenasso. 1995. Landscape ecology: spatial heterogeneity in ecological systems. Science 269: 331–334.

    Article  CAS  PubMed  Google Scholar 

  • Reinert, J. F. 2000. New classification for the composite genus Aedes (Diptera: Culicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain subgenera and species. Journal of the American Mosquito Control Association 16: 175–188.

    CAS  PubMed  Google Scholar 

  • Ribera, I. and A. P. Vogler. 2000. Habitat type as a determinant of species range sizes: the example of lotic-lentic differences in aquatic Coleoptera. Biological Journal of the Linnean Society 71: 33–52.

    Google Scholar 

  • Schäfer, M., V. Storch, A. Kaiser, M. Beck, and N. Becker. 1997. Dispersal behavior of adult snow melt mosquitoes in the Upper Rhine Valley, Germany. Journal of Vector Ecology 22: 1–5.

    PubMed  Google Scholar 

  • Schäfer, M. L., J. O. Lundström, M. Pfeffer, E. Lundkvist, and J. Landin. 2004. Biological diversity versus risk for mosquito nuisance and disease transmission in constructed wetlands in southern Sweden. Medical and Veterinary Entomology 18: 256–267.

    Article  PubMed  Google Scholar 

  • Schneider, D. W. 1999. Snowmelt ponds in Wisconsin: Influence of hydroperiod on invertebrate community structure. 299–318. In D. P. Batzer, R. B. Rader, and S. A. Wissinger (eds.) Invertebrates in Freshwater Wetlands of North America: Ecology and Management. John Wiley & Sons, Inc., New York, NY, USA.

    Google Scholar 

  • Schneider, D. W. and T. M. Frost. 1996. Habitat duration and community structure in temporary ponds. Journal of the North American Benthological Society 15: 64–86.

    Article  Google Scholar 

  • Service, M. W. 1973. Study of the natural predators of Aedes cantans (Meigen) using the precipitin test. Journal of Medical Entomology 10: 503–510.

    CAS  PubMed  Google Scholar 

  • Service, M. W. 1993. Mosquito ecology: Field Sampling Methods. Chapman & Hall, London, UK.

    Google Scholar 

  • StatSoft Inc. 2001. STATISTICA (data analysis software system). Tulsa, OK, USA.

  • Sundberg, S. 1993. Wet forest—the Scandinavian “rain forest”. Fåglar i Uppland 20: 65–80.

    Google Scholar 

  • ter Braak, C. J. F. and P. Smilauer. 2002. CANOCO Reference manual and CanoDraw for Windows User’s guide: Software for Canonical Community Ordination (version 4.5). Microcomputer Power, Ithaca, NY, USA.

    Google Scholar 

  • Thies, C., I. Steffan-Dewenter, and T. Tscharntke. 2003. Effects of landscape context on herbivory and parasitism an different spatial scales. Oikos 101: 18–25.

    Article  Google Scholar 

  • Tufto, J., R. Andersen, and J. Linnell. 1996. Habitat use and ecological correlates of home range size in a small cervid: the roe deer. Journal of Animal Ecology 65: 715–724.

    Article  Google Scholar 

  • Wagner, V. E., G. A. Tully, E. D. Goodman, and H. D. Newson. 1975. A computer simulation model for population studies of woodland pool Aedes mosquitoes. Environmental Entomology 4: 905–919.

    Google Scholar 

  • Wekesa, J. W., B. Yuval, and R. K. Washino. 1996. Spatial distribution of adult mosquitoes (Diptera: Culicidae) in habitats associated with the rice agroecosystem of Northern California. Journal of Medical Entomology 33: 344–350.

    CAS  PubMed  Google Scholar 

  • Wellborn, G. A., D. K. Skelly, and E. E. Werner. 1996. Mechanisms creating community structure across a freshwater habitat. Annual Review of Ecology and Systematics 27: 337–363.

    Article  Google Scholar 

  • Wiens, J. A. 1989. Spatial Scaling in Ecology. Functional Ecology 3: 385–397.

    Article  Google Scholar 

  • Wiens, J. A. and B. T. Milne. 1989. Scaling of “landscapes” in landscape ecology, or landscape ecology from a beetle’s perspective. Landscape Ecology 3: 87–96.

    Article  Google Scholar 

  • Wood, D. M., P. T. Dang, and R. A. Ellis. 1979. The Mosquitoes of Canada. Diptera: Culicidae. Canada Department of Agriculture, Ottawa, ON, Canada.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martina L. Schäfer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, M.L., Lundkvist, E., Landin, J. et al. Influence of landscape structure on mosquitoes (Diptera: Culicidae) and dytiscids (Coleoptera: Dytiscidae) at five spatial scales in Swedish wetlands. Wetlands 26, 57–68 (2006). https://doi.org/10.1672/0277-5212(2006)26[57:IOLSOM]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[57:IOLSOM]2.0.CO;2

Key Words