Skip to main content
Log in

The effect of vegetation on porewater composition in a natural wetland receiving acid mine drainage

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

The effect of plant growth on surface and porewater concentrations of Fe, Mn, Cu, and S within a natural wetland receiving acidic spoil heap drainage was determined over a period of one year. Comparisons were made between unvegetated sites and those colonized by either Phragmites australis or Eriophorum angustifolium. The presence of vegetation increased surface and porewater concentrations of Fe and Mn in spring and summer largely due to the effects of higher evapotranspiration rates in vegetated areas. Microbiological processes were also thought to be important in controlling iron and sulfur concentrations at depth due to bacterial sulfate reduction and metal sulfide precipitation and iron and manganese concentrations close to the sediment surface due to bacterially mediated oxidation. These processes varied in importance with season due to changes in the dominant chemical and biological processes, although the complexity of the system prevented isolation of the principal mechanism involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Literature Cited

  • Armstrong, W. 1978. Root aeration in wetland conditions. p. 269–297. In D. D. Hook and R. M. M. Crawford (ed.) Plant Life in Anaerobic Environments. Ann Arbor Science Publishing Inc., Ann Arbor, MI, USA.

    Google Scholar 

  • Batty, L. C., A. J. M. Baker, B. D. Wheeler, and C. D. Curtis. 2000. The effect of pH and plaque on the uptake of Cu and Mn in Phragmites australis (Cav.) Trin ex. Steudel. Annals of Botany 86: 647–653.

    Article  CAS  Google Scholar 

  • Batty, L. C. and P. L. Younger. 2002. Critical role of macrophytes in achieving low iron concentrations in mine water treatment wetlands. Environmental Science and Technology 36: 3997–4002.

    Article  CAS  PubMed  Google Scholar 

  • Bottrell, S. and M. Novak. 1997. Sulphur isotopic study of two pristine Sphagnum bogs in the western British Isles. Journal of Ecology 85: 125–132.

    Article  CAS  Google Scholar 

  • Boulegue, J., C. J. Lord III, and T. M. Church. 1982. Sulphur speciation and associated trace metals (Fe, Cu) in the porewaters of Great Marsh, Delaware. Geochimica et Cosmoschimica Acta 46: 453–464.

    Article  CAS  Google Scholar 

  • Boult, S., N. Johnson, and C. Curtis. 1997. Recognition of a biofilm at the sediment-water interface of an acid mine drainage-contaminated stream, and its role in controlling iron flux. Hydrological Processes 11: 391–399.

    Article  Google Scholar 

  • Bray, J. T., O. P. Bricker, and B. N. Troup. 1973. Phosphate in interstitial waters of anoxic sediments: oxidation effects during sampling procedure. Science 180: 1362–1364.

    Article  CAS  PubMed  Google Scholar 

  • Bufflap, S. E. and H. E. Allen. 1995. Sediment porewater collection methods for trace metal analysis: a review. Water Research 29: 165–177.

    Article  CAS  Google Scholar 

  • Caçador, I., C. Vale, and F. Catarino. 1996. Accumulation of Zn, Pb, Cu, Cr and Ni in sediments between the roots of the Tagus estuary salt marshes, Portugal. Estuarine and Coastal Shelf Science 42: 393–403.

    Article  Google Scholar 

  • Canfield, D. E. 1989. Reactive iron in marine sediments. Geochimica et Cosmochimica et Acta 53: 619–632.

    Article  CAS  Google Scholar 

  • Dakora, F. D. and D. A. Phillips. 2002. Root exudates as mediators of mineral acquisition in low nutrient environments. Plant and Soil 245: 35–47.

    Article  CAS  Google Scholar 

  • Feijtel, T. C., R. D. DeLaune, and W. H. Patrick Jr. 1988. Biogeochemical control on metal distribution and accumulation in Louisiana sediments. Journal of Environmental Quality 17: 88–94.

    Article  CAS  Google Scholar 

  • Ghanem, S. A. and D. S. Mikkelson. 1988. Sorption of zinc on iron hydrous oxide. Soil Science 146: 15–21.

    Article  CAS  Google Scholar 

  • Golterman, H. L., R. S. Clymo, and M. A. M. Ohnstad. 1978. Handbook for Physical and Chemical Analysis of Fresh Waters. Blackwell Scientific Publications, Oxford, UK.

    Google Scholar 

  • Hedin, R. S., R. W. Nairn, and R. L. P. Kleinmann. 1994. U.S. Department of the Interior, Bureau of Mines Information Circular 9389.

  • Henrot, J. and R. K. Wieder. 1990. Processes of iron and manganese retention in laboratory peat microcosms subjected to acid mine drainage. Journal of Environmental Quality 19: 312–320.

    Article  CAS  Google Scholar 

  • Herbst, M. and L. Kappen. 1999. The ratio of transpiration versus evaporation in a reed belt as influenced by weather conditions. Aquatic Botany 63: 113–125.

    Article  Google Scholar 

  • Kittle, D. L., J. B. McGraw, and K. Garbutt. 1995. Plant litter decomposition in wetlands receiving acid mine drainage. Journal of Environmental Quality 24: 301–306.

    CAS  Google Scholar 

  • Kostka, J. E. and G. W. Luther III. 1995. Seasonal cycling of Fe in saltmarsh sediments. Biogeochemistry 29: 159–181.

    Article  CAS  Google Scholar 

  • Luther III, G. W., T. M. Church, J. R. Scudlark, and M. Cosman. 1986. Inorganic and organic sulfur cycling in salt-marsh porewaters. Science 232: 746–749.

    Article  CAS  PubMed  Google Scholar 

  • Masaoka, Y., M. Kojima, S. Sugihara, T. Yoshihara, M. Koshino, and A. Ichihara. 1993. Dissolution of ferric phosphate by Alfalfa (Medicago sativa L.) root exudates. Plant and Soil 156: 75–78.

    Article  Google Scholar 

  • Moro, M. J., F. Domingo, and G. Lopez. 2004. Seasonal transpiration pattern of Phragmites australis in a wetland of semi-arid Spain. Hydrological Processes 18: 213–227.

    Article  Google Scholar 

  • Oliveira, J. S., J. A. Femandes, C. Alves, J. Morais, and P. Urbano. 1999. Metals in sediment and water of three reed (Phragmites australis (Cav.) Trin ex. Steud.) stands. Hydrobiologia 415: 41–45.

    Article  CAS  Google Scholar 

  • Parker, K. 2000. Transactions of the Institution of Mining and Metallurgy (Section A: Mining Technology) 109: A219-A223.

    Google Scholar 

  • Parkman, R. H., C. D. Curtis, D. J. Vaughan, and J. M. Charnock. 1996. Metal fixation and mobilisation in the sediments of the Afon Goch estuary-Dulas Bay, Anglesey. Applied Geochemistry 11: 203–210.

    Article  CAS  Google Scholar 

  • Scholes, L., R. B. E. Schutes, D. M. Revitt, and D. Purchase. 1989. The treatment of metals in urban runoff by constructed wetlands. Science of the Total Environment 214: 211–219.

    Article  Google Scholar 

  • Southwood, M. J. 1984. Basaltic lavas at Parys Mountain, Anglesey-Trace element geochemistry, tectonic setting and exploration implications. Transactions of the Institution of Mining and Metallurgy (Section B: Applied Earth Science) 193: B51-B54.

    Google Scholar 

  • St.Cyr, L., D. Fortin, and P. G. C. Campbell. 1993. Microscopic observations of the iron plaque of a submerged aquatic plant (Vallisneria americana Michx.). Aquatic Botany 46: 155–167.

    Article  CAS  Google Scholar 

  • Sundby, B., C. Vale, I. Caçador, F. Catarino, M-J. Madureira, and M. Caetano. 1998. Metal-rich concretions on the roots of salt marsh plants: mechanisms and rate of formation. Limnology and Oceanography 43: 245–252.

    CAS  Google Scholar 

  • Templer, P., S. Findlay, and C. Wigand. 1998. Sediment chemistry associated with native and non-native emergent macrophytes of a Hudson River marsh ecosystem. Wetlands 18: 70–78.

    Article  Google Scholar 

  • Thanasuthipitak, T. 1975. The relationship of mineralization to petrology at Parys Mountain, Anglesey. Transactions of the Institution of Mining and Metallurgy (Section B: Applied Earth Science) B84-B71.

  • Weis, P., L. Windham, D. J. Burke, and J. S. Weis. 2002. Release into the environment of metals by 2 vascular salt marsh plants. Marine Environmental Research 54: 325–329.

    Article  CAS  PubMed  Google Scholar 

  • Younger, P. L. (ed.). 1997. Mine Water Treatment Using Wetlands. Chartered Institute of Water and Environmental Management, London, UK.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lesley C. Batty.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Batty, L.C., Baker, A.J.M. & Wheeler, B.D. The effect of vegetation on porewater composition in a natural wetland receiving acid mine drainage. Wetlands 26, 40–48 (2006). https://doi.org/10.1672/0277-5212(2006)26[40:TEOVOP]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[40:TEOVOP]2.0.CO;2

Key Words