Skip to main content

Post-drought responses of semi-aquatic snakes inhabiting an isolated wetland: Insights on different strategies for persistence in a dynamic habitat

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Most aquatic habitats are temporally dynamic, and selection has favored diverse strategies to persist in the face of fluctuating environmental conditions. Isolated wetlands in the southeastern United States harbor high diversities of aquatic and semi-aquatic organisms. However, drought may render these wetlands temporarily unsuitable for many species, sometimes for years at a time. We studied the movement patterns and demography of seven species of semi-aquatic snakes at Ellenton Bay, an isolated 10-ha freshwater wetland in the Upper Coastal Plain of South Carolina, following complete drying of the bay during a drought from 2000 to 2003. Behavioral and population responses varied markedly among species. Cottonmouths (Agkistrodon piscivorus) migrated to and from the wetland annually, fared well, and reproduced during the drought. Banded watersnakes (Nerodia fasciata) suffered a dramatic population decline and apparently did not reproduce, while eastern green watersnakes (N. floridand) were locally extirpated. Black swamp snakes (Seminatrix pygaea) aestivated within the wetland and were less affected by the drought than Nerodia. Interspecific differences in response to drought demonstrate that conservation measures may affect species differently and highlight the importance of terrestrial habitat around wetlands for semi-aquatic reptiles.

This is a preview of subscription content, access via your institution.

Literature Cited

  • Alexander, R. McN. 1998. When is migration worthwhile for animals that walk, swim, or fly? Journal of Avian Biology 29: 387–394.

    Article  Google Scholar 

  • Alexander, R. McN. 2002. The merits and implications of travel by swimming, flight, and running for animals of different sizes. Journal of Integrative and Comparative Biology 42: 1060–1064.

    Article  Google Scholar 

  • Bemis, W. E., W. W. Burggren, and N. E. Kemps (eds.) 1987. The Biology and Evolution of Lungfish. Alan R. Liss, New York, NY, USA.

    Google Scholar 

  • Brown, W. S. and W. S. Parker. 1976. A ventral scale clipping system for permanently marking snakes (Reptilia, Serpentes). Journal of Herpetology 10: 247–249.

    Article  Google Scholar 

  • Brown, G. P., R. Shine, and T. Madsen. 2002. Responses of three sympatric snake species to tropical seasonality in northern Australia. Journal of Tropical Ecology 18: 549–568.

    Article  Google Scholar 

  • Dietz-Brantley, S. E., B. E. Taylor, D. P. Batzer, and A. E. DeBiase. 2002. Invertebrates that aestivate in dry basins of Carolina bay wetlands. Wetlands 22: 767–775.

    Article  Google Scholar 

  • Dodd, C. K. Jr. 1993. Population structure, body mass, and orientation of an aquatic snake (Seminatrix pygaea) during a drought. Canadian Journal of Zoology 71: 1281–1288.

    Article  Google Scholar 

  • Ernst, C. H. and E. M. Ernst. 2003. Snakes of the United States and Canada. Smithsonian, Washington, DC, USA.

    Google Scholar 

  • Fitch, H. S. 1987. Collecting and life-history techniques. p. 143–164, In R. A. Seigel, J. T. Collins, and S. S. Novak (eds.) Snakes: Ecology and Evolutionary Biology. Macmillan, New York, NY, USA.

    Google Scholar 

  • Gibbons, J. W. 2003. Terrestrial habitat: a vital component for herpetofauna of isolated wetlands. Wetlands 23: 630–635.

    Article  Google Scholar 

  • Gibbons, J. W., J. W. Coker, and T. M. Murphy, Jr. 1977. Selected aspects of the life history of the rainbow snake (Farancia erytrogramma). Herpetologica 33: 276–281.

    Google Scholar 

  • Gibbons, J. W. and M. E. Dorcas. 2004. North American Watersnakes: a Natural History. University of Oklahoma Press, Norman, OK, USA.

    Google Scholar 

  • Gibbons, J. W., J. L. Greene, and J. D. Congdon. 1983. Drought-related responses of aquatic turtle populations. Journal of Herpetology 17: 242–246.

    Article  Google Scholar 

  • Gibbons, J. W. and R. D. Semlitsch. 1981. Terrestrial drift fences with pitfall traps: an effective technique for quantitative sampling of animal populations. Brimleyana 7: 1–16.

    Google Scholar 

  • Gibbons, J. W. and R. D. Semlitsch. 1991. Guide to the Reptiles and Amphibians of the Savannah River Site. University of Georgia Press, Athens, GA, USA.

    Google Scholar 

  • Gibbons, J. W., C. T. Winne, D. E. Scott, J. D. Willson, X. A. Glaudas, K. M. Andrews, B. D. Todd, L. A. Fedewa, L. Wilkinson, R. N. Tsaliagos, S. J. Harper, J. L. Greene, T. D. Tuberville, B. S. Metts, M. E. Dorcas, J. P. Nestor, C. A. Young, T. M. Akre, R. N. Reed, K. A. Buhlmann, J. L. Norman, D. A. Croshaw, C. Hagen, and B. B. Rothermel. 2006. Remarkable amphibian biomass and abundance in an isolated wetland: Implications for wetland conservation. Conservation Biology 20: 1457–1465.

    Article  PubMed  Google Scholar 

  • Glaudas, X., K. M. Andrews, J. D. Willson, and J. W. Gibbons. 2007. Migration patterns in a population of cottonmouths (Agkistrodon piscivorus) inhabiting an isolated wetland. Journal of Zoology, London 270:(in press).

  • Gregory, P. T. 1984. Communal denning in snakes. In R. A. Seigel, L. E. Hunt, J. L. Knight, L. Malaret, and N. L. Zuschlag (eds.) Vertebrate Ecology and Systematics: a Tribute to Henry S. Fitch. University of Kansas Museum of Natural History Miscellaneous Publications 10:57–75.

  • Gregory, P. T. and K. W. Stewart. 1975. Long-distance dispersal and feeding strategy of the red-sided garter snake (Thamnophis sirtalis parietalis) in the Interlake of Manitoba. Canadian Journal of Zoology 53: 238–245.

    Article  Google Scholar 

  • Keck, M. B. 1994. A new technique for sampling semi-aquatic snake populations. Herpetological Natural History 2: 101–103.

    Google Scholar 

  • Levins, R. 1969. Effects of random variations of different types on population growth. Proceedings of the National Academy of Sciences 62: 1061–1065.

    Article  CAS  Google Scholar 

  • Ligon, D. B. and C. C. Peterson. 2002. Physiological and behavioral variation in estivation among mud turtles (Kinosternon spp.). Physiological and Biochemical Zoology 75: 283–293.

    Article  PubMed  Google Scholar 

  • Lourdais, O., X. Bonnet, R. Shine, and E. N. Taylor. 2003. When does a reproducing viper (Vipera aspis) ‘decide’ on her litter size? Journal of Zoology London 259: 123–129.

    Article  Google Scholar 

  • Madsen, T. and R. Shine. 1996. Seasonal migration of predators and prey — a study of pythons and rats in tropical Australia. Ecology 77: 149–156.

    Article  Google Scholar 

  • Madsen, T. and R. Shine. 2000a. Rain, fish and snakes: climatically driven population dynamics of Arafura filesnakes in tropical Australia. Oecologia 124: 208–215.

    Article  Google Scholar 

  • Madsen, T. and R. Shine. 2000b. Silver spoons and snake body sizes: prey availability early in life influences long-term growth rates of free-ranging pythons. Journal of Animal Ecology 69: 952–958.

    Article  Google Scholar 

  • McClanahan, L. Jr. 1966. Adaptations of the spadefoot toad, Scaphiopus couchii, to desert environments. Comparative Biochemistry and Physiology 20: 73–99.

    Article  Google Scholar 

  • Moen, D. S., C. T. Winne, and R. N. Reed. 2005. Habitatmediated shifts and plasticity in the evaporative water loss rates of two congeneric pit vipers (Squamata, Viperidae, Agkistrodon). Evolutionary Ecology Research 7: 759–766.

    Google Scholar 

  • Pechmann, J. H. K., D. E. Scott, R. D. Semlitsch, J. P. Caldwell, L. J. Vitt, and J. W. Gibbons. 1991. Declining amphibian populations: the problem of separating human impacts from natural fluctuations. Science 253: 825–940.

    Article  Google Scholar 

  • Polis, G. A., S. D. Hurd, C. T. Jackson, and F. S. Pinero. 1997. El Nino effects on the dynamics and control of an island ecosystem in the Gulf of California. Ecology 78: 1884–1897.

    Google Scholar 

  • Pough, F. H. 1980. The advantages of ectothermy for tetrapods. American Naturalist 115: 92–109.

    Article  Google Scholar 

  • Pulliam, H. R. 1988. Sources, sinks, and population regulation. American Naturalist 132: 652–661.

    Article  Google Scholar 

  • Roe, J. H., B. A. Kingsbury, and N. R. Herbert. 2003. Wetland and upland use patterns in semi-aquatic snakes: implications for wetland conservation. Wetlands 23: 1003–1014.

    Article  Google Scholar 

  • Roe, J. H., B. A. Kingsbury, and N. R. Herbert. 2004. Comparative water snake ecology: conservation of mobile animals that use temporally dynamic resources. Biological Conservation 118: 79–89.

    Article  Google Scholar 

  • Seigel, R. A., J. W. Gibbons, and T. K. Lynch. 1995a. Temporal changes in reptile populations: effects of a severe drought on aquatic snakes. Herpetologica 51: 424–434.

    Google Scholar 

  • Seigel, R. A., R. K. Loraine, and J. W. Gibbons. 1995b. Reproductive cycles and temporal variation in fecundity in the black swamp snake, Seminatrix pygaea. American Midland Naturalist 134: 371–377.

    Article  Google Scholar 

  • Semlitsch, R. D. and J. R. Bodie. 1998. Are small, isolated wetlands expendable? Conservation Biology 12: 1129–1133.

    Article  Google Scholar 

  • Semlitsch, R. D., J. H. K. Pechmann, and J. W. Gibbons. 1988. Annual emergence of juvenile mud snakes (Farancia abacura) at aquatic habitats. Copeia 1988: 243–245.

    Article  Google Scholar 

  • Sharitz, R. R. 2003. Carolina bay wetlands: unique habitats of the southeastern United States. Wetlands 23: 550–562.

    Article  Google Scholar 

  • Shine, R. and R. Lambeck. 1985. A radiotelemetric study of movements, thermoregulation and habitat utilization of Arafura filesnakes (Serpentes, Acrochordidae). Herpetologica 41: 351–361.

    Google Scholar 

  • Willson, J. D., C. T. Winne, and L. A. Fedewa. 2005. Unveiling escape and capture rates of aquatic snakes and salamanders (Siren spp. and Amphiuma means) in commercial funnel traps. Journal of Freshwater Ecology 20: 397–403.

    Google Scholar 

  • Winne, C. T., M. E. Dorcas, and S. M. Poppy. 2005. Population structure, body size, and activity patterns of the black swamp snake (Seminatrix pygaea) in South Carolina. Southeastern Naturalist 4: 1–14.

    Article  Google Scholar 

  • Winne, C. T., T. J. Ryan, Y. Leiden, and M. E. Dorcas. 2001. Evaporative water loss in two natricine snakes, Nerodia fasciata and Seminatrix pygaea. Journal of Herpetology 35: 129–133.

    Article  Google Scholar 

  • Winne, C. T., J. D. Willson, K. M. Andrews, and R. N. Reed. 2006. Efficacy of marking snakes with disposable medical cautery units. Herpetological Review 37: 52–54.

    Google Scholar 

  • Winne, C. T., J. D. Willson, and J. W. Gibbons. 2006. Income breeding allows an aquatic snake (Seminatrix pygaea) to reproduce normally following prolonged drought-induced aestivation. Journal of Animal Ecology 75: 1352–1360.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John D. Willson.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Willson, J.D., Winne, C.T., Dorcas, M.E. et al. Post-drought responses of semi-aquatic snakes inhabiting an isolated wetland: Insights on different strategies for persistence in a dynamic habitat. Wetlands 26, 1071–1078 (2006). https://doi.org/10.1672/0277-5212(2006)26[1071:PROSSI]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[1071:PROSSI]2.0.CO;2

Key Words

  • Agkistrodon piscivorus
  • drought
  • Farancia abacura
  • Farancia erytrogramma
  • metapopulation dynamics
  • Nerodia erythrogaster
  • Nerodia fasciata
  • Nerodia floridana
  • Seminatrix pygaea
  • wetland conservation