Advertisement

Wetlands

, Volume 25, Issue 4, pp 870–883 | Cite as

A conceptual ecological model of Florida Bay

  • David T. Rudnick
  • Peter B. Ortner
  • Joan A. Browder
  • Steven M. Davis

Abstract

Florida Bay is a large and shallow estuary that is linked to the Everglades watershed and is a target of the Greater Everglades ecosystem restoration effort. The conceptual ecological model presented here is a qualitative and minimal depiction of those ecosystem components and linkages that are considered essential for understanding historic changes in the bay ecosystem, the role of human activities as drivers of these changes, and how restoration efforts are likely to affect the ecosystem in the future. The conceptual model serves as a guide for monitoring and research within an adaptive management framework. Historic changes in Florida Bay that are of primary concern are the occurrence of seagrass mass mortality and subsequent phytoplankton blooms in the 1980s and 1990s. These changes are hypothesized to have been caused by long-term changes in the salinity regime of the bay that were driven by water management. However, historic ecological changes also may have been influenced by other human activities, including occlusion of passes between the Florida Keys and increased nutrient loading. The key to Florida Bay restoration is hypothesized to be seagrass community restoration. This community is the central ecosystem element, providing habitat for upper trophic level species and strongly influencing productivity patterns, sediment resuspension, light penetration, nutrient availability, and phytoplankton dynamics. An expectation of Everglades restoration is that changing patterns of freshwater flow toward more natural patterns will drive Florida Bay’s structure and function toward its pre-drainage condition. However, considerable uncertainty exists regarding the indirect effects of changing freshwater flow, particularly with regard to the potential for changing the export of dissolved organic matter from the Everglades and the fate and effects of this nutrient source. Adaptive management of Florida Bay, as an integral part of Everglades restoration, requires an integrated program of monitoring, research to decrease uncertainties, and development of quantitative models (especially hydrodynamic and water quality) to synthesize data, develop and test hypotheses, and improve predictive capabilities. Understanding and quantitatively predicting changes in the nature of watershed-estuarine linkages is the highest priority scientific need for Florida Bay restoration.

Key Words

ecosystem restoration estuaries Florida Bay Everglades adaptive management seagrass freshwater flow salinity effects 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alsuth, S. and R. G. Gilmore. 1994. Salinity and temperature tolerance limits for larval spotted seatrout, Cynoscion nebulosus C. (Pisces: Sciaenidae). International Journal for the Exploration of the Sea. Council Meeting Papers, ICES-CM-1994/L: 17.Google Scholar
  2. Armentano, T., R. Brock, J. Hunt, W. Kruzynski, D. Rudnick, S. Traxler, N. Thompson, P. Ortner, K. Cairnes, M. Robblee, and R. Halley. 1997. Strategic Plan for the Interagency Florida Bay Science Program. Everglades National Park, Florida Bay Program Management Committee [www.aoml.noaa.gov/flbay], Homestead, FL, USA.Google Scholar
  3. Blakesley, B. A., D. M. Berns, and M. O. Hall. 2003. Infection, infestation, and disease: differential impacts of Labyrinthula sp. on the seagrass Thalassia testudinum (Banks ex König) in Florida Bay, USA. p. 135–137. In Florida Bay Program & Abstracts, Joint Conference on the Science and Restoration of the Greater Everglades and Florida Bay Ecosystem [http://conference.ifas.ufl.edu/jc/FB.pdf]. University of Florida, Gainesville, FL, USA.Google Scholar
  4. Boesch, D., N. Armstrong, C. D’Elia, N. Maynard, H. Paerl, and S. Williams. 1993. Deterioration of the Florida Bay Ecosystem: an evaluation of the scientific evidence. Report to the Interagency Working Group on Florida Bay [www.aoml.noaa.gov/flbay]. Everglades National Park, Homestead, FL, USA.Google Scholar
  5. Borum, J., O. Pedersen, T. M. Greve, T. A. Frankovich, J. C. Zieman, J. W. Fourqurean, and C. J. Madden. 2005. Oxygen and sulfide dynamics in the tropical seagrass, Thalassia testudinum, Florida Bay (USA). Journal of Ecology 93: 148–158.CrossRefGoogle Scholar
  6. Bosence, D. W. J. 1989. Biogenic carbonate production in Florida Bay. Bulletin of Marine Science 44: 49–433.Google Scholar
  7. Boyer, J. N., J. W. Fourqurean, and R. D. Jones. 1997. Spatial characterization of water quality in Florida Bay and Whitewater Bay by multivariate analysis: zones of similar influence (ZSI). Estuaries 20: 743–758.CrossRefGoogle Scholar
  8. Boyer, J. N. and R. D. Jones. 1999. Effects of freshwater inputs and loading of phosphorus and nitrogen on the water quality of Eastern Florida Bay. p. 321–329. In K. R. Reddy, G. A. O’Connor, and C. L. Shelske (eds.) Phosphorus Biogeochemistry in Sub-Tropical Ecostysems: Florida as a Case Example. CRC/Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  9. Brand, L. E. 2002. The transport of terrestrial nutrients to South Florida coastal waters. p. 353–406. In J. W. Porter and K. G. Porter (eds.) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys. CRC Press, Boca Raton, FL, USA.Google Scholar
  10. Brewster-Wingard, G. L. and S. E. Ishman. 1999. Historical trends in salinity and substrate in central and northern Florida Bay: a paleoecological reconstruction using modern analogue data: Estuaries 22: 369–383.CrossRefGoogle Scholar
  11. Brewster-Wingard, G. L., J. R. Stone, and C. W. Holmes. 2001. Molluscan faunal distribution in Florida Bay, past and present: an integration of down-core and modern data. Bulletins of American Paleontology 361: 199–231.Google Scholar
  12. Browder, J. A. 1985. Relationship between pink shrimp production on the Tortugas grounds and water flow patterns in the Florida Everglades. Bulletin of Marine Science 37: 839–856.Google Scholar
  13. Browder, J. A., V. R. Restrepo, J. K. Rice, M. B. Robblee, and Z. Zein-Eldin. 1999. Environmental influences on potential recruitment of pink shrimp (penaeus duorarum) from Florida Bay nursery grounds. Estuaries 22: 484–499.CrossRefGoogle Scholar
  14. Browder, J. A., Z. Zein-Eldin, M. D. Criales, M. B. Robblee, and T. L. Jackson. 2002. Dynamics of pink shrimp recruitment in relation to Florida Bay salinity and temperature. Estuaries 25: 1335–1371.CrossRefGoogle Scholar
  15. Butler, M. J. IV, J. H. Hunt, W. F. Herrnkind, M. J. Childress, R. Bertlesen, W. Sharp, T. Matthews, J. M. Field, and H. G. Marshall. 1995. Cascading disturbances in Florida Bay, USA: cyanobacterial bloom, sponge mortality, and implications for juvenile spiny lobsters Panulirus argus. Marine Ecology Progress Series 129: 119–125.CrossRefGoogle Scholar
  16. Carlson, P. R., L. A. Yarbro, and T. R. Barber. 1994. Relationship of sediment sulfide to morality of Thalassia testudinum in Florida Bay. Bulletin of Marine Science 54: 733–74.Google Scholar
  17. Childers, D. L., J. N. Boyer, S. E. Davis, C. Madden, D. Rudnick, and F. Sklar. 2005. Nutrient concentration patterns in the oligotrophic “upside-down” estuaries of the Florida Everglades. Limnology and Oceanography (in press).Google Scholar
  18. Chimney, M. J. and G. Goforth. 2001. Environmental impacts to the Everglades ecosystem: a historical perspective and restoration strategies. Water Science and Technology 44: 93–100.PubMedGoogle Scholar
  19. Cleckner, L. B., P. G. Garrison, J. P. Hurley, M. L. Olson, and D. P. Krabbenhoft. 1998. Trophic transfer of methyl mercury in the northern Florida Everglades. Biogeochemistry 40: 347–361.CrossRefGoogle Scholar
  20. Cleckner, L. B., C. C. Gilmour, J. P. Hurley, and D. P. Krabbenhoft. 1999. Mercury methylation in periphyton of the Florida Everglades. Limnology and Oceanography 44: 1815–1825.CrossRefGoogle Scholar
  21. Cronin, T. M., C. W. Holmes, G. L. Brewster-Wingard, S. E. Ishman, H. Dowsett, D. Keyser, and N. Waibel. 2001. Historical trends in epiphytal ostracodes from Florida Bay: implications for seagrass and macro-benthic algal variability. Bulletins of American Palaeontology 361: 159–197.Google Scholar
  22. Davis, S. E. III, D. L. Childers, J. W. Day, D. T. Rudnick, and F. H. Sklar. 2003. Factors affecting the concentration and flux of materials in two southern Everglades mangrove wetlands. Marine Ecology Progress Series 253: 85–96.CrossRefGoogle Scholar
  23. Davis, S. M., D. L. Childers, J. J. Lorenz, H. R. Wanless, and T. E. Hopkins. 2005. A conceptual model of ecological interactions in the mangrove estuaries of the Florida Everglades. Wetlands 25: (In Press).Google Scholar
  24. DeKanel, J. and J. W. Morse. 1978. The chemistry of orthophosphate uptake from seawater on to calcite and aragonite. Geochemica Cosmochemica Acta 42: 1335–1340.CrossRefGoogle Scholar
  25. Dennison, W. C., R. J. Orth, K. A. Moore, J. C. Stevenson, V. Carter, S. Kollar, P. Bergstrom, and R. A. Batiuk. 1993. Assessing water quality with submersed aquatic vegetation. Bioscience 43: 86–94.CrossRefGoogle Scholar
  26. Dwyer, G. S. and T. M. Cronin. 2001. Ostracode shell chemistry as a paleosalinity proxy in Florida Bay. Bulletins of American Paleontology 361: 249–276.Google Scholar
  27. Ehrhardt, N. M. and C. M. Legault. 1999. Pink shrimp (Farfantepenaeus duorarum) recruitment variability as an indicator of Florida Bay dynamics. Estuaries 22: 471–83.CrossRefGoogle Scholar
  28. Evans, D. W., P. H. Crumley, D. G. Rumbold, and S. Niemczyk. 2003. Mercury in Fish from Eastern Florida Bay. p. 199–201. In Florida Bay Program & Abstracts, Joint Conference on the Science and Restoration of the Greater Everglades and Florida Bay Ecosystem [Available at http://conference.ifas.ufl.edu/jc/FB.pdf]. University of Florida, Gainesville, FL, USA.Google Scholar
  29. Evans, J. L. B. 2005. The effect of benthic microalgal photosynthetic oxygen production on nitrogen fluxes across the sediment-water interface in a shallow, sub-tropical estuary. M.S. Thesis. University of Maryland, College Park, MD, USA.Google Scholar
  30. Faunce, C. H., J. J. Lorenz, J. E. Ley, and J. E. Serafy. 2002. Size structure of gray snapper (Lutjanus griseus) within a mangrove “no-take” sanctuary. Bulletin of Marine Science 70: 211–216.Google Scholar
  31. Fourqurean, J. W. and M. B. Robblee. 1999. Florida Bay: a history of recent ecological changes. Estuaries 99: 345–357.CrossRefGoogle Scholar
  32. Goldenberg, S. B., C. W. Landsea, A. M. Mestas-Nuñez, and W. M. Gray. 2001. The recent increase in Atlantic hurricane activity: causes and implications. Science 293: 474–479.CrossRefPubMedGoogle Scholar
  33. Kelble, C. R., P. B. Ortiner, G. L. Mitchcock, and J. N. Boyer. 2005. Attenuation of photosynthetically available radiation (PAR) in Florida Bay: potential for light limitation of primary producers. Estuaries 28: 560–571.CrossRefGoogle Scholar
  34. Lapointe, B. E. and M. W. Clark. 1992. Nutrient inputs from the watershed and coastal eutrophication in the Florida Keys. Estuaries 15: 465–476.CrossRefGoogle Scholar
  35. Light, S. S., and J. W. Dineen. 1994. Water control in the Everglades: a historical perspective. p. 47–84. In S. M. Davis and J. C. Ogden (eds.) Everglades: the Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.Google Scholar
  36. McIvor, C. C., J. A. Ley, and R. D. Bjork. 1994. Changes in freshwater inflow from the Everglades to Florida Bay including effects on biota and biotic processes: a review. p. 117–146. In S. M. Davis and J. C. Ogden (eds.) Everglades: the Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.Google Scholar
  37. Nagel, E. D. 2004. Nitrogen fixation in benthic microalgal mats: an important internal source of “new” nitrogen to benthic communities in Florida Bay. M.S. Thesis. University of Maryland, College Park, MD, USA.Google Scholar
  38. National Research Council. 2000. Clean Coastal Waters: Understanding and Reducing the Effects of Nutrient Pollution. National Academy Press, Washington, DC, USA.Google Scholar
  39. Nuttle, W. K., J. W. Fourqurean, B. J. Cosby, J. C. Zieman, and M. B. Robblee. 2000. Influence of net freshwater supply on salinity in Florida Bay. Water Resources Research 36: 1805–1822.CrossRefGoogle Scholar
  40. Ogden, J. C., S. M. Davis, K. J. Jacobs, T. Barnes, and H. E. Fling. 2005. The use of conceptual ecological models to guide ecosystem restoration in south Florida. Wetlands 25:(in press).Google Scholar
  41. Orem, W. H., C. W. Holmes, C. Kendall, H. E. Lerch, A. L. Bates, S. R. Silva, A. Boylan, M. Corum, M. Marot, and C. Hedgman. 1999. Geochemistry of Florida Bay sediments: nutrient history at five sites in eastern and central Florida Bay. Journal of Coastal Research 15: 1055–1071.Google Scholar
  42. Phlips, E. J. and S. Badylak. 1996. Spatial variability in phytoplankton standing crop and composition in a shallow inner-shelf lagoon, Florida Bay, FL, USA. Bulletin of Marine Science 58: 203–216.Google Scholar
  43. Powell, A. B., G. W. Thayer, M. Lacroix, and R. Cheshire. 2001. Interannual changes in juvenile and small resident fish assemblages, and seagrass densities in Florida Bay. p. 199–200. In 2001 Florida Bay Science Conference Abstracts, [http://conference. ifas.ufl.edu/FloridaBay/abstract.pdf]. University of Florida, Gainesville, FL, USA.Google Scholar
  44. Prager, E. J. and R. B. Halley. 1999. The influence of seagrass on shell layers and Florida Bay mudbanks. Journal of Coastal Research 15: 1151–1162.Google Scholar
  45. Robblee, M. B., T. R. Barber, P. R. Carlson, Jr., M. J. Durako, J. W. Fourqurean, L. K. Muehlstein, D. Porter, L. A. Yarbro, R. T. Zieman, and J. C. Zieman. 1991. Mass mortality of the tropical seagrass Thalassia testudinum in Florida Bay (USA). Marine Ecology Progress Series 71: 297–299.CrossRefGoogle Scholar
  46. Rudnick, D. T., Z. Chen, D. Childers, J. Boyer, and T. Fontaine. 1999. Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershed. Estuaries 22: 398–416.CrossRefGoogle Scholar
  47. Rumbold, D. G., L. Fink, D. Evans, D. Krabbenhoft, and M. Olson. 2003. Source identification of Florida Bay’s methylmercury problem: mainland runoff versus atmospheric deposition and in situ production. p. 233–235. In Florida Bay Program & Abstracts, Joint Conference on the Science and Restoration of the Greater Everglades and Florida Bay Ecosystem [http://conference.ifas. ufl.edu/jc/FB.pdf]. University of Florida, Gainesville, FL, USA.Google Scholar
  48. Rutherford, E. S., T. W. Schmidt, and J. T. Tilmant. 1989. Early life history of spotted seatrout (Cynoscion nebulosus) and gray snapper (Lutjanus griseus) in Florida Bay, Everglades National Park, Florida. Bulletin of Marine Science 44: 49–64.Google Scholar
  49. Schomer, N. S. and R. D. Drew. 1982. An ecological characterization of the lower Everglades, Florida Bay, and the Florida Keys. United States Fish and Wildlife Service, Office of Biological Services, Washington, DC, USA. WS/OBS-82/58. 1.Google Scholar
  50. Scott, G. I., M. H. Fulton, E. F. Wirth, G. T. Chandler, P. B. Key, J. W. Daugomah, D. Bearden, K. W. Chung, E. D. Strozier, S. Silvertsen, A. Dias, M. Sanders, J. M. Macauley, L. R. Goodman, M. W. LaCroix, G. W. Thayer, and J. R. Kucklick. 2002. Toxicological studies in tropical ecosystems: an ecotoxicological risk assessment of pesticide runoff in south Florida estuarine ecosystems. Journal of Agricultural and Food Chemistry 50: 4400–4408.CrossRefPubMedGoogle Scholar
  51. Sheridan, P. 1996. Forecasting the fishery for pink shrimp, Penaeus duorarum, on the Tortugas grounds, Florida. Fishery Bulletin 94: 743–755.Google Scholar
  52. Sklar, F. H., M. J. Chimney, S. Newman, P. McCormick, D. Gawlik, S. Miao, C. McVoy, W. Said, J. Newman, C. Coronado, G. Crozier, M. Korvela, and K. Rutchey. 2005. The ecological-societal underpinnings of Everglades restoration. Frontiers in Ecology and the Environment 3: 161–169.Google Scholar
  53. Smith, N. P. 1994. Long-term gulf-to-Atlantic transport through tidal channels in the Florida Keys. Bulletin of Marine Science 54: 602–609.Google Scholar
  54. Strom, D. G. and G. A. Graves. 2001. A comparison of mercury in estuarine fish between Florida Bay and Indian River Lagoon, Florida, U.S.A. Estuaries 24: 597–609.CrossRefGoogle Scholar
  55. Stumpf, R. P., M. L. Frayer, M. J. Durako, and J. C. Brock. 1999. Variations in water clarity and bottom albedo in Florida Bay from 1985 to 1997. Estuaries 22: 431–444.CrossRefGoogle Scholar
  56. Sutula, M., B. Perez, E. Reyes, J. W. Day Jr., and D. Childers. 2003. Spatio-temporal variability in material exchange between the southeastern Everglades wetlands and Florida Bay. Estuarine, Coastal, and Shelf Science 57: 757–781.CrossRefGoogle Scholar
  57. Swart, P. K., G. F. Healy, R. E. Dodge, P. Kramer, J. H. Hudson, R. B. Halley, and M. B. Robblee. 1996. The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: a 160 year record of climatic and anthropogenic influence. Paleogeography, Paleoclimatology, Paleoecology 123: 219–237.CrossRefGoogle Scholar
  58. Swart, P. K., G. F. Healy, L. Greer, M. Lutz, A. Saied, D. Anderegg, R. E. Dodge, and D. Rudnick. 1999. The use of proxy chemical records in coral skeletons to ascertain past environmental conditions in Florida Bay. Estuaries 22: 384–397.CrossRefGoogle Scholar
  59. Thayer, G. W., A. B. Powell, and D. E. Hoss. 1999. Composition of larval, juvenile, and small adult fishes relative to changes in environmental conditions in Florida Bay. Estuaries 22: 518–533.CrossRefGoogle Scholar
  60. Tilmant, J. T. 1989. A history and an overview of recent trends in the fisheries of Florida Bay. Bulletin of Marine Science 44: 3–33.Google Scholar
  61. Tomas, C. R., B. Bendis, and K. Johns. 1999. Role of nutrients in regulating plankton blooms in Florida Bay. p. 323–337. In H. Kumpf, K. Steidinger, and K. Sherman (eds.) The Gulf of Mexico Large Marine Ecosystem: Assessment, Sustainability, and Management. Blackwell Science. Malden, MA, USA.Google Scholar
  62. Wang, J. D., J. van de Kreeke, N. Krishnan, and D. Smith. 1994. Wind and tide response in Florida Bay. Bulletin of Marine Science 54: 579–601.Google Scholar
  63. Wanless, H. R., R. W. Parkinson, and L. P. Tedesco. 1994. Sea level control on stability of Everglades wetlands. p. 199–223. In S. M. Davis and J. C. Ogden (eds.) Everglades: the Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.Google Scholar
  64. Wanless, H. R. and M. G. Tagett. 1989. Origin, growth and evolution of carbonate mudbanks in Florida Bay. Bulletin of Marine Science 44: 454–489.Google Scholar
  65. Zieman, J. C., J. W. Fourqurean, and T. A. Frankovich. 1999. Seagrass die-off in Florida Bay (USA): long-term trends in abundance and growth of of Thalassia testudinum and the role of hypersalinity and temperature. Estuaries 22: 460–470.CrossRefGoogle Scholar
  66. Zieman, J. C., J. W. Fourqurean, and R. L. Iverson. 1989. Distribution, abundance and productivity of seagrasses and macroalgae in Florida Bay. Bulletin of Marine Science 44: 292–311.Google Scholar

Copyright information

© Society of Wetland Scientists 2005

Authors and Affiliations

  • David T. Rudnick
    • 1
  • Peter B. Ortner
    • 2
  • Joan A. Browder
    • 3
  • Steven M. Davis
    • 4
  1. 1.Coastal Ecosystems DivisionSouth Florida Water Management DistrictWest Palm BeachUSA
  2. 2.Atlantic Oceanographic and Meteorological LaboratoryNational Oceanic and Atmospheric AdministrationMiamiUSA
  3. 3.Southeast Fisheries Science Center National Marine Fisheries ServiceNational Oceanic and Atmospheric AdministrationMiamiUSA
  4. 4.RECOVER SectionSouth Florida Water Management DistrictWest Palm BeachUSA

Personalised recommendations