Skip to main content
Log in

Hydromorphic determinants of aquatic habitat variability in Lake Superior coastal wetlands

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Despite the recognized importance of wetlands as habitat for fishes and the growing need to assess and manage human impacts on that habitat, there is little information on patterns and variability of habitat within Great Lakes coastal wetlands. Our goal was to describe wetland aquatic habitat patterns and the natural factors that organize them as a step towards developing habitat assessment schemes and identifying experimental design elements for future synoptic surveys. We analyzed data on aquatic vegetation structure, water chemistry, and water movement (inferred from gypsum plug dissolution) in relation to hydrology and morphology in inundated segments of ten relatively un-impacted coastal marshes of western Lake Superior. Spatial differences in aquatic habitat within wetlands were as large or larger than differences among wetlands, and habitat patterns were strongly associated with morphology and hydrology. Back-bay segments tended to have greater vegetation cover and structural complexity and lower levels of water movement, and they were prone to high water temperatures and low dissolved oxygen levels in wetlands having little seiche activity. Increasing seiche inputs tended to homogenize habitat elements among wetland segments, while increasing tributary inputs tended to increase spatial variability. Patterns in emergent vegetation differed from patterns in submerged/floating vegetation, and different assessment metrics may be needed for different plant zones. Segment-scale sampling schemes like those used in this study have the potential to elucidate habitat patterns within inundated portions of wetlands with a reasonable level of effort. Human impacts on coastal wetland fish habitat must be interpreted in the context of natural spatial heterogeneity as structured by wetland morphology and magnitude of seiche and tributary inputs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

Literature Cited

  • Adamus, P., T. J. Danielson, and A. Gonyaw. 2001. Indicators for monitoring biological integrity of inland freshwater wetlands: a survey of North American technical literature (1990–2000). U.S. EPA Office of Water, Washington, DC, USA. EPA843-R-01-Fall 2001.

    Google Scholar 

  • Albert, D. A. 1995. Regional landscape ecosystems of Michigan, Minnesota, and Wisconsin: a working map and classification. USDA Forest Service North Central Forest Experiment Station, St. Paul, MN, USA. Rep. NC-178.

    Google Scholar 

  • Bauer, S. B. and S. C. Ralph. 1999. Aquatic habitat indicators and their application to water quality objectives within the Clean Water Act. U.S. EPA Region 10, Seattle, WA, USA. EPA-910-R-9-014.

    Google Scholar 

  • Bedford, K. W. 1992. The physical effects of the Great Lakes on tributaries and wetlands. Journal of Great Lakes Research 18:571–589.

    Article  Google Scholar 

  • Benson, B. J. and J. J. Magnuson. 1992. Spatial heterogeneity of littoral fish assemblages in lakes: relation to species diversity and habitat structure. Canadian Journal of Fisheries and Aquatic Sciences 49:1493–1500.

    Article  Google Scholar 

  • Bologna, P. A. X. and K. L. Heck. 2002. Impact of habitat edges on density and secondary production of seagrass—associated fauna. Estuaries 25:1033–1044.

    Article  Google Scholar 

  • Brazner, J. C. 1997. Regional, habitat, and human development influences on coastal wetland and beach fish assemblages in Green Bay, Lake Michigan. Journal of Great Lakes Research 23:36–52.

    Article  Google Scholar 

  • Brazner, J. C. and E. W. Beals. 1997. Patterns in fish assemblages from coastal wetland and beach habitats in Green Bay, Lake Michigan: a multivariate analysis of abiotic and biotic forcing factors. Canadian Journal of Fisheries and Aquatic Sciences 54: 1743–1761.

    Article  Google Scholar 

  • Brazner, J. C., M. E. Sierszen, J. R. Keough, and D. K. Tanner. 2000. Assessing the ecological importance of coastal wetlands in a large lake context. Verhandlung des Internationalem Verein der Limnologie 27:1950–1961.

    Google Scholar 

  • Brown, C. L., T. P. Poe, J. R. P. French, and D. W. Schloesser. 1988. Relationships of phytomacrofauna to surface area in naturally occurring macrophyte stands. Journal of the North American Benthological Society 7:129–139.

    Article  Google Scholar 

  • Cardinale, B. J., V. J. Brady, and T. M. Burton. 1998. Changes in the abundance and diversity of coastal wetland fauna from the open water/macrophyte edge towards shore. Wetlands Ecology and Management 6:59–68.

    Article  Google Scholar 

  • Casselman, J. M. and C. A. Lewis. 1996. Habitat requirements of northern pike (Esox lucius). Canadian Journal of Fisheries and Aquatic Sciences 53(Supp. 1):161–174.

    Article  Google Scholar 

  • Castellanos, D. L. and L. P. Rozas. 2001. Nekton use of submerged aquatic vegetation, marsh, and shallow unvegetated bottom in the Atchafalaya River Delta, a Louisiana tidal freshwater ecosystem. Estuaries 24:184–197.

    Article  Google Scholar 

  • Chubb, S. L. and C. R. Liston. 1986. Density and distribution of larval fishes in Pentwater Marsh, a coastal wetland on Lake Michigan. Journal of Great Lakes Research 12:332–343.

    Article  Google Scholar 

  • Crosbie, B. and P. Chow-Fraser. 1999. Percentage land use in the watershed determines the water and sediment quality of 22 marshes in the Great Lakes basin. Canadian Journal of Fisheries and Aquatic Sciences 56:1781–1791.

    Article  Google Scholar 

  • Eadie, J. and A. Keast. 1984. Resource heterogeneity and fish species diversity in lakes. Canadian Journal of Zoology 62:1689–1695.

    Article  Google Scholar 

  • Edgar, G. J., N. S. Barrett, D. J. Graddon, and P. R. Last. 2000. The conservation significance of estuaries: a classification of Tasmanian estuaries using ecological, physical, and demographic attributes as a case study. Biological Conservation 92:383–397.

    Article  Google Scholar 

  • Engle, S. 1985. Aquatic community interactions of submerged macrophytes. Wisconsin Department of Natural Resources, WI, USA. Technical Bulletin 156.

    Google Scholar 

  • Fennessy, S., M. Gurnes, J. Mack, and D. H. Wardrop. 2001. Methods for evaluating wetland condition: using vegetation to assess environmental condition in wetlands. U.S. EPA Office of Water, Washington, DC, USA. EPA-822-R-01-007j.

    Google Scholar 

  • Geis, J. W. 1985. Environmental influences on the distribution and composition of wetlands in the Great Lakes basin. p. 15–31. In H. H. Prince and F. M. D’Itri (eds.) Coastal Wetlands. Lewis Publishers, Chelsea, MI, USA.

    Google Scholar 

  • Harris, H. J., V. A. Harris, H. A. Regier, and D. J. Rapport. 1988. Importance of the nearshore area for sustainable redevelopment in the Great Lakes with observations on the Baltic Sea. Ambio 17: 112–120.

    Google Scholar 

  • Hinch, S. G. and N. C. Collins. 1993. Relationships of littoral fish abundance to water chemistry and macrophyte variables in central Ontario lakes. Canadian Journal of Fisheries and Aquatic Sciences 50:1870–1878.

    Article  Google Scholar 

  • Höök, T. O., N. M. Eagan, and P. W. Webb. 2001. Habitat and human influences on larval fish assemblages in northern Lake Huron coastal marsh bays. Wetlands 21:281–291.

    Article  Google Scholar 

  • Hughes, R. M. and J. M. Omernick. 1983. An alternative for characterizing stream size. p. 87–102. In T. D. Fontaine and S. M. Bartell (eds.) Dynamics of Lotic Ecosystems. Ann Arbor Science, Ann Arbor, MI, USA.

    Google Scholar 

  • Johnston, C. A., S. D. Bridgham, and J. P. Schubauer-Berigan. 2001. Nutrient dynamics in relation to geomorphology of riverine wetlands. Soil Sciences Society of America Journal 65:557–577.

    Article  CAS  Google Scholar 

  • Jokiel, P. L. and J. I. Morrissey. 1993. Water motion on coral reefs: evaluation of the ‘clod card’ technique. Marine Ecology Progress Series 93:175–181.

    Article  Google Scholar 

  • Jude, D. J. and J. Pappas. 1992. Fish utilization of Great Lakes coastal wetlands. Journal of Great Lakes Research 18:651–672.

    Article  Google Scholar 

  • Keast, A., J. Harker, and D. Turnbull. 1978. Nearshore fish habitat utilization and species associations in Lake Opinicon (Ontario, Canada). Environmental Biology of Fishes 3:173–184.

    Article  Google Scholar 

  • Keddy, P. A. and A. A. Reznicek. 1985. Vegetation dynamics, buried seeds, and water level fluctuations on the shorelines of the Great Lakes. p. 33–58. In H. H. Prince and F. M. D’Itri (eds.) Coastal Wetlands. Lewis Publishers, Chelsea, MI, USA.

    Google Scholar 

  • Kelly, J. R. 2001. Nitrogen effects on coastal marine ecosystems. p. 207–251. In R. F. Follett and J. L. Hatfield (eds.) Nitrogen in the Environment: Sources, Problems, and Management. Elsevier, Amsterdam, The Netherlands.

    Chapter  Google Scholar 

  • Keough, J. R., T. A. Thompson, G. R. Guntenspergen, and D. A. Wilcox. 1999. Hydrogeomorphic factors and ecosystem response of wetlands of the Great Lakes. Wetlands 19:821–834.

    Article  Google Scholar 

  • Lammert, M. and J. D. Allan. 1999. Assessing biotic integrity of streams: effects of scale in measuring the influence of land use/cover and habitat structure on fish and invertebrates. Environmental Management 23:257–270.

    Article  PubMed  Google Scholar 

  • Lane, J. A., C. B. Portt, and C. K. Minns. 1996. Nursery habitat characteristics of Great Lakes fishes. Canadian Manuscript Reports of Fisheries and Aquatic Sciences 2338.

  • Lewis, C. A., N. P. Lester, A. D. Bradshaw, J. E. Fitzgibbon, K. Fuller, L. Hakanson, and C. Richards. 1996. Considerations of scale in habitat conservation and restoration. Canadian Journal of Fisheries and Aquatic Sciences 53(Supp. 1):440–445.

    Article  Google Scholar 

  • Lougheed, V. L., B. Crosbie, and P. Chow-Fraser. 2001. Primary determinants of macrophyte community structure in 62 marshes across the Great Lakes basin: latitude, land use, and water quality effects. Canadian Journal of Fisheries and Aquatic Sciences 58: 1603–1612.

    Article  Google Scholar 

  • MacKenzie, R. A., J. L. Kaster, and J. V. Klump. 2004. The ecological patterns of benthic invertebrates in a Great Lakes coastal wetland. Journal of Great Lakes Research 30:58–69.

    Article  Google Scholar 

  • Meeker, J. E. 1996. Wild-rice and sedimentation processes in a Lake Superior coastal wetland. Wetlands 16:219–231.

    Google Scholar 

  • Minc, L. D. 1997. Great Lakes coastal wetlands: an overview of controlling abiotic factors, regional distribution, and species composition. Michigan Natural Features Inventory reports, Lansing, MI, USA.

    Google Scholar 

  • Minns, C. K., J. R. M. Kelson, and R. G. Randall. 1996. Detecting the response of fish to habitat alterations in freshwater ecosystems. Canadian Journal of Fisheries and Aquatic Sciences 53(Suppl. 1): 403–414.

    Article  Google Scholar 

  • Murkin, E. J., H. R. Murkin, and R. D. Titman. 1992. Nektonic invertebrate abundance and distribution at the emergent vegetation-open water interface in the Delta Marsh, Manitoba, Canada. Wetlands 12:45–52.

    Article  Google Scholar 

  • Omernick, J. M. and A. L. Gallant. 1988. Ecoregions of the upper midwest states. U.S. EPA Environmental Research Laboratory, Corvallis, OR, USA. EPA/600/3-88/037.

    Google Scholar 

  • Peterson, G. W. and R. E. Turner. 1994. The value of salt marsh edge vs. interior as a habitat for fish and decapod crustaceans in a Louisiana tidal marsh. Estuaries 17:235–262.

    Article  Google Scholar 

  • Petticrew, E. L. and J. Kalff. 1991. Calibration of a gypsum source for freshwater flow measurements. Canadian Journal of Fisheries and Aquatic Sciences 48:1244–1249.

    Google Scholar 

  • Poff, N. L. and J. D. Allan. 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76:606–627.

    Article  Google Scholar 

  • Porter, E. T., L. P. Sanford, and S. E. Suttles. 2000. Gypsum dissolution is not a universal integrator of ‘water motion’. Limnological Oceanography 45:145–158.

    Google Scholar 

  • Richardson, C. J. and J. Vymazal. 2001. Sampling macrophytes in wetlands. p. 167–185. In R. B. Rader, R. P. Batzer, and S. A. Wissinger (eds.) Bioassessment and Management of North American Freshwater Wetlands. Wiley, New York, NY, USA.

    Google Scholar 

  • Roman, C. T., N. Jaworski, F. T. Short, S. Findlay, and R. S. Warren. 2000. Estuaries of the northeastern United States: habitat and land use signatures. Estuaries 23:743–764.

    Article  CAS  Google Scholar 

  • Rose, C. and W. G. Crumpton. 1996. Effects of emergent macrophytes on dissolved oxygen dynamics in a prairie pothole wetland. Wetlands 16:495–502.

    Article  Google Scholar 

  • Rozas, L. P. and T. J. Minello. 2001. Marsh terracing as a wetland restoration tool for creating fishery habitat. Wetlands 21:327–341.

    Article  Google Scholar 

  • Siemenstad, C. A., S. B. Brandt, A. Chalmers, R. Dame, L. A. Deegan, R. Hodson, and E. D. Houde. 2000. Habitat—biotic interactions. p. 427–455. In J. E. Hobbe (ed.) Estuarine Science—a Synthetic Approach to Research and Practice. Island Press, Washington, DC, USA.

    Google Scholar 

  • Smith, P. G. R., V. Glooschenko, and D. A. Hagen. 1991. Coastal wetlands of three Canadian Great Lakes: inventory, current conservation initiatives, and patterns of variation. Canadian Journal of Fisheries and Aquatic Sciences 48:1581–1594.

    Article  Google Scholar 

  • Stephenson, T. D. 1990. Fish reproductive utilization of coastal marshes of Lake Ontario near Toronto. Journal of Great Lakes Research 16:71–81.

    Article  Google Scholar 

  • Suthers, I. M. and J. H. Gee. 1986. Role of hypoxia in limiting diel spring and summer distribution of juvenile yellow perch (Perca flavens) in a prairie marsh. Canadian Journal of Fisheries and Aquatic Sciences 43:1562–1570.

    Article  Google Scholar 

  • Suzuki, N., S. Endoh, M. Kawashima, Y. Itakura, C. D. McNabb, F. M. D’Itri, and T. R. Batterson. 1995. Discontinuity bar in a wetland on Lake Huron’s Saginaw Bay. Journal of Freshwater Ecology 10:111–123.

    CAS  Google Scholar 

  • Tanner, D. K., J. C. Brazner, V. J. Brady, and R. R. Regal. 2004. Habitat associations of larval fish in a Lake Superior coastal wetland. Journal of Great Lakes Research 30:349–359.

    Article  Google Scholar 

  • Thompson, T. L. and E. P. Glenn. 1994. Plaster standards to measure water motion. Limnological Oceanography 39:1768–1779.

    Article  Google Scholar 

  • Trebitz, A. S., J. A. Morrice, and A. M. Cotter. 2002. Relative role of lake and tributary in hydrology of Lake Superior coastal wetlands. Journal of Great Lakes Research 28:212–227.

    Article  Google Scholar 

  • Uncles, R. D., J. A. Stephens, and R. A. Smith. 2002. The dependence of estuarine turbidity on tidal intrusion length, tidal range, and residence time. Continental Shelf Research 22:1835–1856.

    Article  Google Scholar 

  • Voigts, D. K. 1976. Aquatic invertebrate abundance in relation to changing marsh vegetation. American Midland Naturalist 95:313–323.

    Article  Google Scholar 

  • Vorwerk, P. D., A. K. Whitfield, P. D. Cowley, and A. W. Paterson. 2003. The influence of selected environmental variables on fish assemblage structure in a range of southeast African estuaries. Environmental Biology of Fishes 66:237–247.

    Article  Google Scholar 

  • Wang, L., J. L. Lyons, P. Rasmussen, P. Seelbach, T. Simon, M. Wiley, P. Kanehl, E. Baker, S. Niemela, and P. M. Stewart. 2003. Watershed, reach, and riparian influences on stream fish assemblages in the Northern Lakes and Forest Ecoregion, USA. Canadian Journal of Fisheries and Aquatic Sciences 60:491–505.

    Article  Google Scholar 

  • Weaver, M. J., J. J. Magnuson, and M. K. Clayton. 1997. Distribution of littoral fishes in structurally complex macrophytes. Canadian Journal of Fisheries and Aquatic Sciences 54:2277–2289.

    Article  Google Scholar 

  • Whillans, T. H. 1992. Assessing threats to fishery values of Great Lakes wetlands. p. 156–165. In J. Kusler and R. Smardon (eds.) Wetlands of the Great Lakes: Protection, Restoration, Policies, and Status of the Science. Proceedings of the International Wetland Symposium, Niagara Falls, NY, USA.

    Google Scholar 

  • Wilcox, D. A. and J. E. Meeker. 1992. Implications for faunal habitat related to altered macrophyte structure in regulated lakes in northern Minnesota. Wetlands 12:192–203.

    Article  Google Scholar 

  • Wilcox, D. A. 1995. The role of wetlands as nearshore habitat in Lake Huron. p. 223–245. In M. Munawar, T. Edsall, and J. Leach (eds.) The Lake Huron Ecosystem: Ecology, Fisheries, and Management. SPB Academic Publishing, Amsterdam, The Netherlands.

    Google Scholar 

  • Wilcox, D. A., J. E. Meeker, P. L. Hudson, B. J. Armitage, M. G. Black, and D. G. Uzarski. 2002. Hydrologic variability and the application of index of biotic integrity metrics to wetlands: a Great Lakes evaluation. Wetlands 22:588–615.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anett S. Trebitz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trebitz, A.S., Morrice, J.A., Taylor, D.L. et al. Hydromorphic determinants of aquatic habitat variability in Lake Superior coastal wetlands. Wetlands 25, 505–519 (2005). https://doi.org/10.1672/0277-5212(2005)025[0505:HDOAHV]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2005)025[0505:HDOAHV]2.0.CO;2

Key words