Advertisement

Wetlands

, Volume 23, Issue 1, pp 149–160 | Cite as

Association between aquatic vegetation and landscape indicators of human pressure

  • Jean-Christophe AznarEmail author
  • Alain Dervieux
  • Patrick Grillas

Abstract

Preserving biodiversity implies the development of indicators to evaluate management practices and to identify critical thresholds and dynamics that modify ecosystems. This study was conducted in the Camargue Delta (South of France). Mediterranean wetlands represent great potential for biodiversity, and their natural dynamics are strongly influenced by water control. We hypothesized that human influence can be estimated by taking into account spatial patterns of human artifacts. We defined two types of landscape indicators of human pressure: the spatial density and the connectivity of the hydrologic network. Co-inertia analysis was used to explore the correlation between these indicators and aquatic macrophyte communities sampled in marshes. Results suggested that human action may strongly influence marsh aquatic macrophyte communities and affect ecological dynamics. Particularly, alteration of wetland integrity by water control may promote the replacement of specialized species by generalist and exotie species. The canal network seems to facilitate dispersion of Ludwigia peploides between marshes. This result confirmed the negative role of corridors in facilitating dispersion of exotic species from one patch to another. We found positive correlations between landscape indicators and macrophyte composition, which is consistent with the tested hypothesis. The density of hydraulic structure was revealed to be a relevant landscape predictor of marsh biological state.

Key Words

Mediterranean wetlands aquatic macrophyte invasive species landscape indicators hydrologic network 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Agresti, A. 1996. An Introduction to Categorical Data Analysis. John Wiley & Sons, New York, NY, USA.Google Scholar
  2. Akaike, H. 1983. Information measures and model selection. Bulletin of the International Statistical Institute 50:277–290.Google Scholar
  3. Angermeier, P. L. and J. R. Karr. 1994. Biological integrity versus biological diversity as policy directives. Protecting biotic resources. BioScience 44:690–697.Google Scholar
  4. Auble, G. T., M. Friedman, and M. L. Scott. 1994. Relating riparian vegetation to present and future streamflows. Ecological Applications 4:544–554.CrossRefGoogle Scholar
  5. Blondel, J. and J. D. Vigne. 1993. Space, time and man as determinants of diversity of birds and mammals in the Mediterranean region. p. 135–146. In R. E. Ricklefts and D. Schluter (eds.) Species Diversity in Ecological Communities. University Chicago Press, Chicago, IL, USA.Google Scholar
  6. Bonis, A., J. Lepart, and P. Grillas. 1995. Seed bank dynamics and coexistence of annual macrophytes in a temporary and variable habitat. Oïkos 74:81–92.Google Scholar
  7. Britton, R. H. and V. D. Podlejski. 1981. Inventory and classification of the wetlands of the Camargue (France). Aquatic Botany 10: 195–228.CrossRefGoogle Scholar
  8. Chapin, F. S., B. H. Walker, R. J. Hobbs, D. U. Hooper, J. H. Lawton, O. E. Sala, and D. Tilman. 1997. Biotic control over the functioning of ecosystems. Science 277:500–504.CrossRefGoogle Scholar
  9. Chauvelon, P. 1996. Hydrologie quantitative d’une zone humide méditerranéenne aménagée: le bassin de Fumemorte en grande Camargue, delta du Rhône. Ph.D. Dissertation. University of Montpellier II, Montpellier, France.Google Scholar
  10. Chessel, D. and S. Dolédec. 1996. ADE, Version 4: Hypercard Stacks and Quick Basic Microsoft programme library for the analysis of environmental data. User’s Manual. ESA CNRS Software. University Lyon I, France.Google Scholar
  11. Chessel, D., and P. Mercier. 1993. Couplage de triplets statistiques et liaison espèces—environment. p. 5–43. In J. D. Lebreton and B. Asselain (eds.) Biométrie et Environnement. Masson, Paris, France.Google Scholar
  12. Costa, J. C., J. Capelo, M. D. Espirito Santo, M. Lousa, A. Monteiro, S. Mesquita, M. T. Vasconcelos, and I. Moreira. 1999. Plant communities of the lagoons of the Portuguese Coastal Superdistrict—a multivariate approach. Hydrobiologia 415:67–75.CrossRefGoogle Scholar
  13. Dolédec, S. and D. Chessel. 1994. Co-inertia analysis: An alternative method for studying species-environment relationships. Freshwater Biology 31:277–294.CrossRefGoogle Scholar
  14. Environmental Systems Research Institute. 1996. Areview Version 3.0. Environmental Systems Research Institute, Redlands, CA, USA.Google Scholar
  15. Escofier, B. and J. Pages. 1990. Analyses Factorielles Simples et Multiples. Objectifs, Méthodes et Interprétation. Dunod, Paris, France.Google Scholar
  16. Fahrig, L. and H. G. Merriam. 1985. Habitat patch connectivity and population survival. Ecology 66:1762–1768.CrossRefGoogle Scholar
  17. Fernandez-Alaes, C., M. Fernandez-Alaes, and E. Becares. 1999. Influence of water level fluctuation on the structure and composition of the macrophyte vegetation in two small temporary lakes in the northwest of Spain. Hydrobiologia 415:155–162.CrossRefGoogle Scholar
  18. Forman, R. T. T. and M. Godron. 1986. Landscape Ecology. John Wiley & Sons, New York, NY, USA.Google Scholar
  19. Franklin, J. F. 1993. Preserving biodiversity: Species, ecosystems, or landscapes? Ecological Applications 3:202–205.CrossRefGoogle Scholar
  20. Garcia, L. V., T. Maranon, A. Moreno, and L. Clemente. 1993. Above ground-biomass and species richness in a Mediterranean salt marsh. Journal of Vegetation Science 4:417–424.CrossRefGoogle Scholar
  21. Gittins, R. 1985. Canonical Analysis, a Review with Applications in Ecology. Springer-Verlag, Berlin, Germany.Google Scholar
  22. Grillas, P. 1990. Distribution of submerged macrophytes in the Camargue in relation to environmental factors. Journal of Vegetation Science 1:393–402.CrossRefGoogle Scholar
  23. Grillas, P. 1992. Les communautés de macrophytes submergées des marais temporaires oligohalins de Camargue. Etude expérimentale des causes de la distribution des espèces. Ph. D. Dissertation. University of Rennes I, Rennes, France.Google Scholar
  24. Guerlesquin, M. and V. Podlejski. 1980. Characées et végétaux submergés et flottants associés dans quelques milieux camarguais. Naturalia Monspeliensia, Série Botanique 36:1–20.Google Scholar
  25. Haslam, S. M. 1996. Enhancing river vegetation: Conservation, development and restoration. Hydrobiologia 340:345–348.CrossRefGoogle Scholar
  26. Heurteaux, P. 1970. Rapport des eaux souterraines avec les sols halomorphes et la végétation en Camargue. Revue d’Ecologie (La Terre et la Vie) 24:467–510.Google Scholar
  27. Hudson, W. E. 1991. Landscape Linkages and Biodiversity. Island Press, Washington, DC, USA.Google Scholar
  28. Kupferberg, S. J. 1996. Hydrologic and geomorphic factors affecting conservation of a river-breeding frog (Rana boylii). Ecological Applications 6:1332–1344.CrossRefGoogle Scholar
  29. Lack, P. C. 1988. Hedge intersections and breeding bird distribution in farmland. Bird Study 35:133–136.CrossRefGoogle Scholar
  30. Lindenmayer, D. B., C. R. Margules, and D. B. Botkin. 2000. Indicators of biodiversity for ecologically sustainable forest management. Conservation Biology 14:941–950.CrossRefGoogle Scholar
  31. Manly, B. J. F. 1997. Randomization, Bootstrap and Monte Carlo Methods in Biology. Chapman & Hall, London, UK.Google Scholar
  32. Mercier, P.. 1991. Etude des relations espèces-environnement et analyse de la co-structure d’un couple de tableaux. Ph. D. Dissertation. University Claude Bernard-Lyon I, Lyon, France.Google Scholar
  33. Mercier, P., D. Chessel, and S. Dolédec. 1992. Complete correspondence analysis of an ecological profile data table: A central ordination method. Acta Oecologica 13:25–44.Google Scholar
  34. Merriam, H. G. 1984. Connectivity: a fundamental characteristc of landscape pattern. p. 1–15. In J. Brandt and P. Agger (eds.) Methodology in Landscape Ecological Research and Planning. Roskilde University Center, Roskilde, Denmark.Google Scholar
  35. Merriam, H. G. 1991. Corridors and connectivity: Animals population in heterogeneous environments. p. 133–142. In D. A. Saunders and R. J. Hobbs (eds.) Nature Conservation: the Role of Corridors. Surrey Beatty, Sons, Chipping Norton, Australia.Google Scholar
  36. Mesleard, F., P. Grillas, and J. Lepart. 1991. Plant community succession in a coastal wetland after abandonment of cultivation: the example of the Rhone delta. Vegetatio 94:35–45.Google Scholar
  37. Mesleard, F., P. Grillas, and L. Tan Ham. Restoration of seasonally-flooded marshes in abandened ricefields in the Camargue (southern France). Preliminary results on vegetation and land use by ducks. Ecological Engineering 5:95–106.Google Scholar
  38. Molinier, R. and G. Tallon. 1970. Prodrome des unités phytosociologiques observées en Camargue. Bulletin du Muséum d’ Histoire Naturelle de Marseille 30:5–110.Google Scholar
  39. Naiman, R. J., H. Decamps, and M. Pollock. 1993. The role of riparian corridors in maintening regional biodiversity. Ecological Applications 3:209–212.CrossRefGoogle Scholar
  40. Naveh, Z. and R. H. Whittaker. 1979. Structural and floristic diversity of shrublands and woodlands in northern Israel and other Mediterranean areas. Vegetatio 41:171–190.CrossRefGoogle Scholar
  41. Noss, R. F. 1987. From plant communities to landscapes in conservation inventories: A look at the nature conservancy (USA). Biological Conservation 41:11–37.CrossRefGoogle Scholar
  42. O’neill, R. V., C. T. Hunsaker, K. B. Jones, K. H. Riiters, J. D. Wickham, P. M. Schwartz, I. A. Goodman, B. L. Jackson, and W. S. Baillargeon. 1997. Monitoring environnemental quality at the landscape scale. Using indicators to assess biotic diversity. watershed integrity, and landsape stability. BioScience 47:513–519.CrossRefGoogle Scholar
  43. Poff, N. L. and J. D. Allan. 1995. Functional organization of stream fish assemblages in relation to hydrological variability. Ecology 76:606–627.CrossRefGoogle Scholar
  44. Poff, N. L., J. D. Allan, M. B. Bain, J. R. Karr, K. L. Prestegaard, B. D. Richter, R. E. Sparks, and J. C. Stromberg. 1997. The natural flow regime. A paradigm for river conservation and restoration. Bioscience 47:769–784.CrossRefGoogle Scholar
  45. Poiani, K. A., B. D. Richter, M. G. Anderson, and H. E. Richter. 2000. Biodiversity conservation at multiples scales: Functional sites, landscapes and networks. BioScience 50:133–146.CrossRefGoogle Scholar
  46. Ramdani, M., R. J. Flower, N. Elkhiati, M. M. Kraiem, A. A. Fathi, H. H. Birks, and S. T. Patrick. 2001. North African wetland lakes: Characterization of nine sites included in the CASSARINA project. Aquatic Ecology 35:281–302.CrossRefGoogle Scholar
  47. Sadoul, N. 1997. The importance of spatial scales in long-term monitoring of colonial Charadriiformes in southern France. Colonial Waterbirds 20:330–338.CrossRefGoogle Scholar
  48. SAS Institute Inc., 1990. SAS/STAT User’s Guide. Version 6, fourth edition. Cary, NC, USA.Google Scholar
  49. Sisk, T. D., A. E. Launer, K. R. Switky, and P. R. Ehrlich. 1994. Identifying extinction threats: Global analyses of the distribution of biodiversity and the expansion of the human enterprise. Bioscience 44:592–604.CrossRefGoogle Scholar
  50. Smith, F. D. M., R. M. May, R. Pellew, T. H. Johnson, and K. S. Walter. 1993. Estimating extinction rates. Nature 364:494–496.CrossRefGoogle Scholar
  51. Sousa, W. P.. 1984. The role of disturbance in natural communities. Annual Review of Ecology and Systematics 9:497–518.Google Scholar
  52. Suarez, A. V., D. T. Bolger, and T. J. Case. 1998. Effects of fragmentation and invasion on native ant communities in coastal southern California. Ecology 79:2041–2056.CrossRefGoogle Scholar
  53. Schwarz, A. M. and T. Snelder. 1999. Integrated submerged aquatic vegetation management in an urban New Zealand river. Hydrobiologia 15:235–241.CrossRefGoogle Scholar
  54. Tamisier, A. 1991. The Camargue: In search of a new equilibrium between man and nature. Lansdcape and Urban Planning 20:263–267.CrossRefGoogle Scholar
  55. Tamisier, A. and P. Grillas. 1994. A review of habitats changes in the Camargue: an assessment of the loss of biological diversity on the wintering waterfowl community. Biological Conservation 70:39–47.CrossRefGoogle Scholar
  56. Ter Braak, C. J. F. 1986. Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology 67:1167–1179.CrossRefGoogle Scholar
  57. Thioulouse, J., D. Chessel, S. Dolédec, and J. M. Olivier. 1997. ADE-4: a multivariate analysis and graphical display software. Statistics and Computing 7:75–83.CrossRefGoogle Scholar
  58. Tucker, L. R. 1958. An inter-battery method of factor analysis. Psychometrika 23:111–136.CrossRefGoogle Scholar
  59. Turner, M. G., R. H. Gardner, and R. V. O’Neill. 1995. Ecological dynamics at broad scales. Bioscience 45 (supplement):29–35.CrossRefGoogle Scholar
  60. Urbanc-Bercic, O. and A. Blejec. 1993. Aquatic macrophytes of Lake Bled: changes in species composition distribution and production. Hydrobiologia 262:189–194.Google Scholar
  61. Van Vierssen, W. 1982. The ecology of communities dominated by Zannichellia taxa in Western Europe II. Distribution, synecology and productivity aspects in relation to environmental factors. Aquatic Botany 13:385–483.CrossRefGoogle Scholar
  62. Van Wijck, C., K. De Groot, and P. Grillas. 1992. The effect of anaerobic sediment on the growth of Potamogeton pectinatus L.: the role of organic matter, sulphide and ferrous iron. Aquatic Botany 44:31–49.CrossRefGoogle Scholar
  63. Van Wijk, R. J.. 1989. Ecological studies on Potamogeton pectinatus L., III. Reproductive strategies and germination ecology. Aquatic Botany 33:271–300.CrossRefGoogle Scholar
  64. Verboom, B. and H. Huitema. 1997. The importance of linear landscape element for the pipistrelle Pipistrellus pipistrellus and the serotine bat Eptesicus serotinus. Landscape Ecology 12:117–125.CrossRefGoogle Scholar
  65. Verboom, B. and R. Van Apeldoorn. 1990. Effects of habitat fragmentation on the red squirrel, Sciurus vulgaris L. Landscape Ecology 4:171–176.CrossRefGoogle Scholar
  66. Verhoeven, J. T. A. 1975. Ruppia-communities in the Camargue France. Distribution and structure in relation to salinity and salinity fluctuations. Aquatic Botany 1:217–241.CrossRefGoogle Scholar
  67. Verhoeven, J. T. A. 1979. The ecology of Ruppia-dominated communities in Western Europe. Distribution of Ruppia representatives in relation to their autoecology. Aquatic Botany 6:197–268.CrossRefGoogle Scholar
  68. Verhoeven, J. T. A. 1980. The ecology of Ruppia-dominated communities in Western Europe. II-Synecological classification structure and dynamics of the macroflora and macrofauna communities. Aquatic Botany 8:1–85.CrossRefGoogle Scholar
  69. With, K. A. and T. O. Crist. 1995. Critical thresholds in species responses to landscape structure. Ecology 76:2446–2459.CrossRefGoogle Scholar
  70. Zavala, M. A. and T. V. Burkey. 1997. Application of ecological models to landscape planning: The case of the Mediterranean basin. Landscape and Urban Planning 38:213–227.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2003

Authors and Affiliations

  • Jean-Christophe Aznar
    • 1
    Email author
  • Alain Dervieux
    • 1
  • Patrick Grillas
    • 2
  1. 1.CNRS DESMIDArlesFrance
  2. 2.Station Biologique de la Tour du ValatArlesFrance

Personalised recommendations