Skip to main content
Log in

Control of organic carbon mineralization by alternative electron acceptors in four peatlands, Central New York State, USA

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

Terminal mineralization of organic carbon (C) in northern peat soils usually produces more carbon dioxide (CO2) than methane (CH4), but the maintenance of microbial CO2 production is unclear. Carbon dioxide production relies on oxygen (O2) or alternative (to O2) electron acceptors (NO 3 , Fe(III), SO 2−4 ). We examined rates of CO2 production and CH4 production in peat soils from two ombrotrophic bogs and two minerotrophic fens incubated in vitro with and without added glucose (an electron donor) and added electron acceptors. Soil interstitial water had dissolved NO 3 (2–17 μmol L−1) in three sites, and SO 2−4 (2–20 μmol L−1) and Fe(III) (0.02–0.8 μmol L−1) in all four sites. Peat soils incubated in vitro without added glucose or electron acceptors had rates of CH4 production between 0.2 and 1.5 μmol g−1 day−1 and rates of CO2 production between 8 and 17 μmol g−1 day−1. Added glucose increased CO2 production in all of the peat soils, although adding an electron acceptor with glucose had no additional impact in the bogs. Nitrate plus glucose had the largest increase in CO2 production in both fens, and SO 2−4 plus glucose enhanced CO2 production in one fen. Added glucose alone or with O2 or Fe increased CH4 production in peat soil from the two bogs, whereas glucose plus SO 2−4 or NO 3 inhibited CH4 production. Glucose plus an electron acceptor inhibited CH4 production in the forest fen but enhanced CH4 production in sedge fen. Terminal electron acceptors did not universally divert C and electron flow away from CH4 production and towards CO2 production in these peat soils, and thus maintenance of CO2 production is still uncertain, with no single explanation likely.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Achtnich, C., F. Bak, and R. Conrad. 1995. Competition for electron donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biology and Fertility of Soils 19: 65–72.

    Article  CAS  Google Scholar 

  • Anderson, J. P. E. and K. H. Domsch. 1978. A physiological method for the quantitative measurement of microbial biomass in soils. Soil Biology & Biochemistry 10: 215–222.

    Article  CAS  Google Scholar 

  • Anderson, T. H. and K. H. Domsch. 1993. The metabolic quotient for CO2 (qCO2) as a specific activity parameter to assess the effects of environmental conditions, such as pH, on the microbial biomass of forest soils. Soil Biology & Biochemistry 25: 393–395.

    Article  Google Scholar 

  • Balderston, W. L. and W. J. Payne. 1976. Inhibition of methanogenesis in salt marsh sediments and whole-cell suspensions of methanogenic bacteria by nitrogen oxides. Applied and Environmental Microbiology 32: 264–269.

    CAS  PubMed  Google Scholar 

  • Basiliko, N., T. R. Moore, P. M. Lafleur, and N. T. Roulet. 2005. Seasonal and inter-annual decomposition, microbial biomass, and nitrogen dynamics in a Canadian bog. Soil Science 170: 902–912.

    Article  CAS  Google Scholar 

  • Bendell-Young, L. 2003. Peatland interstitial water chemistry in relation to that of surface pools along a peatland mineral gradient. Water, Air, and Soil Pollution 143: 363–375.

    Article  CAS  Google Scholar 

  • Bergman, I., P. Lundberg, C. M. Preston, and M. Nilson. 2000. Degradation of 13C-U-glucose in Sphagnum majus litter: Responses to redox, pH, and temperature. Soil Science Society of America Journal 64: 1368–1381.

    CAS  Google Scholar 

  • Blodau, C. 2002. Carbon cycling in peatlands — a review of processes and controls. Environmental Reviews 10: 111–134.

    Article  CAS  Google Scholar 

  • Blodau, C. and T. R. Moore. 2003. Micro-scale CO2 and CH4 dynamics in a peat soil during a water fluctuation and sulfate pulse. Soil Biology & Biochemistry 35: 535–547.

    Article  CAS  Google Scholar 

  • Blodau, C., C. L. Roehm, and T. R. Moore. 2002. Iron, sulfur, and dissolved carbon dynamics in a northern peatland. Archiv fuer Hydrobiologie 154: 561–583.

    CAS  Google Scholar 

  • Bremmer, E. and P. Kuikman. 1994. Microbial utilization of 14C[U]glucose in soil is affected by the amount and timing of glucose addition. Soil Biology & Biochemistry 26: 511–517.

    Article  Google Scholar 

  • Chidthaisong, A. and R. Conrad. 2000. Turnover of glucose and acetate coupled to reduction of nitrate, ferric iron and sulfate, and to methanogenesis in anoxic rice field soil. FEMS Microbiology Ecology 31: 73–86.

    Article  CAS  PubMed  Google Scholar 

  • Clarens, M., N. Bernet, J.-P. Delgenes, and R. Moletta. 1998. Effects of nitrogen oxides and denitrification by Pseudomonas stutzeri on acetotrophic methanogenesis by Methanosarcina mazei. FEMS Microbiology Ecology 25: 271–276.

    Article  CAS  Google Scholar 

  • Coleman, M. L., D. B. Hedrick, D. R. Lovley, D. C. White, and K. Pye. 1993. Reduction of Fe(III) in sediments by sulphatereducing bacteria. Nature 361: 436–438.

    Article  CAS  Google Scholar 

  • Damman, A. W. H. 1995. Major mire vegetation units in relation to the concepts of ombrotrophy and minerotrophy: a worldwide perspective. Gunneria 70: 23–34.

    Google Scholar 

  • D’Angelo, E. M. and K. R. Reddy. 1999. Regulators of heterotrophic microbial potentials in wetland soils. Soil Biology & Biochemistry 31: 815–830.

    Article  Google Scholar 

  • Fahey, T. J., C. J. Williams, J. N. Rooney-Varga, C. C. Cleveland, K. M. Postek, S. D. Smith, and D. R. Bouldin. 1999. Nitrogen deposition in and around an intensive agricultural district in Central New York. Journal of Environmental Quality 28: 1585–1600.

    Article  CAS  Google Scholar 

  • Fenchel, T. and B. J. Findlay. 1995. Ecology and Evolution in Anoxic Worlds. Oxford University Press, Oxford, UK.

    Google Scholar 

  • Fey, A. and R. Conrad. 2000. Effect of temperature on carbon and electron flow and on the archaeal community in methanogenic rice field soil. Applied and Environmental Microbiology 66: 4790–4797.

    Article  CAS  PubMed  Google Scholar 

  • Fisk, M. C., K. F. Ruether, and J. B. Yavitt. 2003. Microbial activity and functional composition among northern peatland ecosystems. Soil Biology & Biochemistry 35: 591–602.

    Article  CAS  Google Scholar 

  • Flett, R. J., R. D. Hamilton, and N. E. R. Campbell. 1976. Aquatic acetylene-reduction techniques: solutions to several problems. Canadian Journal of Microbiology 22: 43–51.

    Article  CAS  PubMed  Google Scholar 

  • Froelich, P. N., G. P. Klinkhammer, M. L. Bender, N. A. Luedtke, G. R. Heath, D. Cullen, P. Dauphin, D. Hammond, B. Hartman, and V. Maynard. 1979. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: Suboxic diagenesis. Geochimica et Cosmochimica Acta 43: 1075–1090.

    Article  CAS  Google Scholar 

  • Gauci, V., E. Matthews, N. Dise, B. Walter, D. Koch, G. Granberg, and M. Vile. 2004. Sulfate suppression of the wetland methane source in the 20th and 21st centuries. Proceedings of the National Academy of Sciences USA 101: 12583–12587.

    Article  CAS  Google Scholar 

  • Gorham, E. 1991. Northern peatlands: Role in the global carbon cycle and probable response to climate warming. Ecological Applications 1: 182–193.

    Article  Google Scholar 

  • Jarrell, K. F. and M. L. Kalmokoff. 1988. Nutritional requirements of the methanogenic archaebacteria. Canadian Journal of Microbiology 34: 557–576.

    CAS  Google Scholar 

  • Klüber, H. D. and R. Conrad. 1998. Inhibitory effects of nitrate, nitrite, NO and N2O on methanogenesis by Methanosarcina barkeri and Methanobacterium bryantii. FEMS Microbiology Ecology 25: 331–339.

    Article  Google Scholar 

  • Kotsyurbenko, O. R., A. N. Nozhevnikova, and G. A. Zavarzin. 1992. Anaerobic degradation of organic-matter by psychrophilic microorganisms. Zhurnal Obshchei Biologii 53: 159–175.

    CAS  Google Scholar 

  • Kristjansson, K. J., P. Schönheit, and R. K. Thauer. 1982. Different Ks values for hydrogen of methanogenic bacteria and sulfate reducing bacteria: An explanation for the apparent inhibition of methanogenesis by sulfate. Archives of Microbiology 131: 278–282.

    Article  CAS  Google Scholar 

  • Kruger, M., P. Frenzel, D. Kemnitz, and R. Conrad. 2005. Activity, structure and dynamics of the methanogenic archaeal community in a flooded Italian rice field. FEMS Microbiology Ecology 51: 323–331.

    Article  PubMed  CAS  Google Scholar 

  • Krumbock, M. and R. Conrad. 1991. Metabolism of positionlabeled glucose in anoxic methanogenic paddy soil and lake sediment. FEMS Microbiology Ecology 85: 247–256.

    Article  Google Scholar 

  • Lovley, D. R. and M. J. Klug. 1986. Model for the distribution of sulfate reduction and methanogenesis in freshwater sediments. Geochimica et Cosmochimica Acta 50: 11–18.

    Article  CAS  Google Scholar 

  • Lovley, D. R. and E. J. P. Phillips. 1986. Organic matter mineralization with reduction of ferric iron in anaerobic sediments. Applied and Environmental Microbiology 51: 683–689.

    CAS  PubMed  Google Scholar 

  • Mahowald, N. M., A. R. Baker, G. Bergametti, N. Brooks, R. A. Duce, T. D. Jickells, N. Kubilay, J. M. Prospero, and I. Tegen. 2005. Atmospheric global dust cycle and iron inputs to the ocean. Global Biogeochemical Cycles 19: doi:10.1029/2004GB002402.

  • Megonigal, J. P., M. E. Hines, and P. T. Visscher. 2004. Anaerobic metabolism: linkages to trace gases and aerobic processes. p. 317–424. In H. D. Holland and K. K. Turekian (eds.) Treatise on Geochemistry. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Metje, M. and P. Frenzel. 2005. Effect of temperature on anaerobic ethanol oxidation and methanogenesis in acidic peat from a northern wetland. Applied and Environmental Microbiology 71: 8191–8200.

    Article  CAS  PubMed  Google Scholar 

  • Moore, P. D. 2002. The future of cool temperate bogs. Environmental Conservation 29: 3–20.

    Article  CAS  Google Scholar 

  • Moore, T. R. and M. Dalva. 1997. Methane and carbon dioxide exchange potentials of peat soils in aerobic and anaerobic laboratory incubations. Soil Biology & Biochemistry 29: 1157–1164.

    Article  CAS  Google Scholar 

  • Mountfort, D. O. and R. A. Asher. 1981. Role of sulfate reduction versus methanogenesis in terminal carbon flow in polluted intertidal sediment of Waimea Inlet, Nelson, New Zealand. Applied and Environmental Microbiology 42: 252–258.

    CAS  PubMed  Google Scholar 

  • Neubauer, S. C., K. Givler, S. K. Valentine, and J. P. Megonigal. 2005. Seasonal patterns and plant-mediated controls of subsurface wetland biogeochemistry. Ecology 86: 3334–3344.

    Article  Google Scholar 

  • Roden, E. E. and R. G. Wetzel. 1996. Organic carbon oxidation and suppression of methane production by microbial Fe(III) oxide reduction in vegetated and unvegetated freshwater wetland sediments. Limnology and Oceanography 41: 1733–1748.

    Article  CAS  Google Scholar 

  • Scholten, J. C. M., P. M. van Bodegom, J. Vogelaar, A. van Ittersum, K. Hordijk, W. Roelofsen, and A. J. M. Stams. 2002. Effect of sulfate and nitrate on acetate conversion by anaerobic microorganisms in a freshwater sediment. FEMS Microbiology Ecology 42: 375–385.

    Article  CAS  PubMed  Google Scholar 

  • Segers, R. and S. W. M. Kengen. 1998. Methane production as a function of anaerobic carbon mineralization: a process model. Soil Biology & Biochemistry 30: 1107–1117.

    Article  CAS  Google Scholar 

  • Swerts, M., R. Merckx, and K. Vlassak. 1996. Denitrification, N2 fixation and fermentation during anaerobic incubation of soils amended with glucose and nitrate. Biology and Fertility of Soils 23: 229–235.

    Article  CAS  Google Scholar 

  • Steinmann, P. and W. Shotyk. 1997. Chemical composition, pH, and redox state of sulfur and iron in complete vertical porewater profiles from two Sphagnum peat bogs, Jura Mountains, Switzerland. Geochimica et Cosmochimica Acta 61: 1143–1163.

    Article  CAS  Google Scholar 

  • Urban, N. R., S. J. Eisenreich, and S. E. Bayley. 1988. The relative importance of denitrification and nitrate assimilation in midcontinental bogs. Limnology and Oceanography 33: 1611–1617.

    Article  CAS  Google Scholar 

  • Urban, N. R., S. J. Eisenreich, and D. F. Grigal. 1989. Sulfur cycling in forested Sphagnum bog in northern Minnesota. Biogeochemistry 7: 81–109.

    Article  Google Scholar 

  • van Bodegom, P. M. and A. J. M. Stams. 1999. Effects of alternative electron acceptors and temperature on methanogenesis in rice paddy soils. Chemosphere 39: 167–182.

    Article  Google Scholar 

  • van Bodegom, P. M., J. C. M. Scholten, and A. J. M. Stams. 2004. Direct inhibition of methanogenesis by ferric iron. FEMS Microbiology Ecology 49: 261–268.

    Article  PubMed  CAS  Google Scholar 

  • Vile, M. A., S. D. Bridgham, and R. K. Wieder. 2003. Response of anaerobic carbon mineralization rates to sulfate amendments in a boreal peatland. Ecological Applications 13: 720–734.

    Article  Google Scholar 

  • Vitt, D. H., S. E. Bayley, and T. L. Jin. 1995. Seasonal variation in water chemistry over a bog-rich fen gradient in Continental Western Canada. Canadian Journal of Fisheries and Aquatic Sciences 52: 587–606.

    Article  CAS  Google Scholar 

  • Wardle, D. A. and A. Ghani. 1995. A critique of the microbial metabolic quotient (qCO2) as a bioindicator of disturbance and ecosystem development. Soil Biology & Biochemistry 27: 1601–1610.

    Article  CAS  Google Scholar 

  • Weber, S., T. Lueders, M. W. Friedrich, and R. Conrad. 2001. Methanogenic populations involved in the degradation of rice straw in anoxic paddy soil. FEMS Microbiology Ecology 38: 11–20.

    Article  CAS  Google Scholar 

  • Weston, N. B. and S. B. Joye. 2005. Temperature-driven decoupling of key phases of organic matter degradation in marine sediments. Proceedings of the National Academy of Sciences, USA 102: 17036–17040.

    Article  CAS  Google Scholar 

  • Whiting, G. J. and J. P. Chanton. 1993. Primary production control of methane emission from wetlands. Nature 364: 794–795.

    Article  CAS  Google Scholar 

  • Wilhelm, E., R. Battino, and R. J. Wilcock. 1977. Low-pressure solubility of gases in liquid water. Chemical Reviews 77: 19–262.

    Article  Google Scholar 

  • Williams, C. J., E. A. Shingara, and J. B. Yavitt. 2000. Phenol oxidase activity in peatlands in New York State: Response to summer drought and peat type. Wetlands 20: 416–421.

    Article  Google Scholar 

  • Yao, H. and R. Conrad. 2000. Electron balance during steadystate production of CH4 and CO2 in anoxic rice soils. European Journal of Soil Science 51: 369–378.

    CAS  Google Scholar 

  • Yamamoto, S., J. B. Alcauskas, and T. E. Crozier. 1976. Solubility of methane in distilled water and seawater. Journal of Chemical Engineering Data 21: 78–80.

    Article  CAS  Google Scholar 

  • Yavitt, J. B. and G. E. Lang. 1990. Methane production in contrasting wetland sites: response to organic-chemical components of peat and to sulfate reduction. Geomicrobiology Journal 8: 27–46.

    Article  CAS  Google Scholar 

  • Yavitt, J. B., G. E. Lang, and R. K. Wieder. 1987. Control of carbon mineralization to CH4 and CO2 in anaerobic, Sphagnum-derived peat from Big Run Bog, West Virginia. Biogeochemistry 4: 141–157.

    Article  CAS  Google Scholar 

  • Yavitt, J. B. and M. Seidman-Zager. 2006. Methanogenic conditions in northern peat soils. Geomicrobiology Journal 23: 119–127.

    Article  CAS  Google Scholar 

  • Yavitt, J. B., C. J. Williams, and R. K. Wieder. 1997. Production of methane and carbon dioxide in peatland ecosystems across North America: effects of temperature, aeration, and organic chemistry of peat. Geomicrobiology Journal 14: 299–316.

    Article  CAS  Google Scholar 

  • Zinder, S. H. 1993. Physiological ecology of methanogens. p. 128–206. In J. G. Ferry (ed.) Methanogenesis: Ecology, Physiology, Biogeochemistry and Genetics. Chapman and Hall, New York, NY, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dettling, M.D., Yavitt, J.B. & Zinder, S.H. Control of organic carbon mineralization by alternative electron acceptors in four peatlands, Central New York State, USA. Wetlands 26, 917–927 (2006). https://doi.org/10.1672/0277-5212(2006)26[917:COOCMB]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2006)26[917:COOCMB]2.0.CO;2

Key Words

Navigation