Skip to main content
Log in

Modern pollen rain and diatom assemblages in a Lake Erie coastal marsh

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

We present an analysis of modern pollen and diatom assemblages in surficial sediments in a coastal marsh at Rondeau Provincial Park, on the northern shore of Lake Erie in southwestern Ontario, Canada. The objectives of the study were (1) to determine how pollen and diatom assemblages in surface sediments vary as a function of the dominant vegetation community and moisture availability at the sampling site and (2) to analyze pollen-vegetation relationships of four dominant wetland plants: Cephalanthus occidentalis, Phragmites australis, Typha spp., and Zizania aquatica, in order to improve interpretations of fossil sequences. Canonical variate analysis (CVA) was used to compare pollen and diatom spectra from sampling sites in three marsh zones delineated on the basis of moisture availability. Using the pollen or the diatom datasets, the resulting discriminant functions correctly classified 86% of the wettest sites, 72% of those with intermediate moisture availability, and only 25% of the sites in the driest parts of the wetland. Since 35% of the sampling sites were misclassified by the CVA on the basis of pollen assemblages, a representation factor approach is needed to complement the comparative approach when analyzing pollen datasets from wetland contexts. Percent cover vegetation data at sediment sampling sites are used to illustrate pollen-vegetation relationships for the ecologically important wetland plants at the site. Phragmites australis and Typha spp. produce small amounts of pollen relative to their abundance, while Cephalanthus occidentalis and Zizania aquatica produce abundant pollen, which is deposited highly locally in the case of Cephalanthus. These data will enable improved interpretations of fossil pollen and diatom sequences from wetland contexts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Bennett, K. D. and K. J. Willis. 2001. Pollen. p. 5–32. In J. P. Smol, H. J. B. Birks, and W. M. Last (eds.) Tracking Environmental Change Using Lake Sediments. Volume 3: Terrestrial, Algal, and Siliceous Indicators. Kluwer, Dordrecht, The Netherlands.

    Google Scholar 

  • Bradshaw, R. H. W. and T. Webb, III. 1985. Relationships between contemporary pollen and vegetation data from Wisconsin and Michigan, USA. Ecology 66:721–737.

    Article  Google Scholar 

  • Brown, K. M., M. S. V. Douglas, and J. P. Smol. 1994. Siliceous microfossils in a Holocene High Arctic peat deposit. Canadian Journal of Botany 72:208–216.

    Article  Google Scholar 

  • Brugam, R. B. 1980. Postglacial diatom stratigraphy of Kirchner Marsh, Minnesota. Quaternary Research 13:133–146.

    Article  Google Scholar 

  • Bunting, M. J., H. C. Duthie, D. R. Campbell, B. G. Warner, and L. J. Turner. 1997. A paleoecological record of recent environmental change at Big Creek Marsh, Long Point, Lake Erie. Journal of Great Lakes Research 23:349–368.

    Article  Google Scholar 

  • Bunting, M. J., B. G. Warner, and C. R. Morgan. 1998. Interpreting pollen diagrams from wetlands: Pollen representation in surface samples from Oil Well Bog, southern Ontario. Canadian Journal of Botany 76:1780–1797.

    Article  Google Scholar 

  • Calcote, R. 1998. Identifying forest stand types using pollen from forest hollows. The Holocene 8:423–432.

    Article  Google Scholar 

  • Clark, J. S. 1986. Late Holocene vegetation and coastal processes on a Long Island tidal marsh. Journal of Ecology 74:561–578.

    Article  Google Scholar 

  • Clark, J. S. and W. A. Patterson, III. 1985. The development of a tidal marsh: Upland and oceanic influences. Ecological Monographs 55:189–217.

    Article  Google Scholar 

  • Cowardin, L. M., V. Carter, F. C. Golet, and E. T. LaRoe. 1992. Classification of Wetland and Deepwater Habitats of the United States. United States Department of the Interior, Fish and Wildlife Service, Washington, DC, USA. FWS/OBS-79/31.

    Google Scholar 

  • Cwynar, L. C., E. Burden, and J. H. McAndrews. 1979. Inexpensive sieving method for concentrating pollen and spores from fine-grained sediments. Canadian Journal of Earth Sciences 16:1115–1120.

    CAS  Google Scholar 

  • Davis, M. B. 1963. On the theory of pollen analysis. American Journal of Science 261:897–212.

    Google Scholar 

  • Dieffenbacher-Krall, A. C. and G. L. Jacobson, Jr. 2001. Post-glacial changes in the geographic ranges of certain aquatic vascular plants in North America. Biology and Environment: Proceedings of the Royal Irish Academy 101B:79–84.

    Google Scholar 

  • Dore, W. G. and J. McNeill. 1980. Grasses of Ontario. Agriculture Canada, Ottawa, Ontario, Canada.

    Google Scholar 

  • Earle, J. C. and H. C. Duthie. 1984. A Multivariate Statistical Approach for Interpreting Marshland Diatom Succession. p. 441–458. In M. Ricard (ed.) Proceedings of the 8th Diatom Symposium, Paris. Koeltz Scientific Books, Koenigstein, Germany.

    Google Scholar 

  • Fægri, K. and J. Iversen. 1989. Textbook of Pollen Analysis, 4th edition. John Wiley & Sons, Chichester, UK.

    Google Scholar 

  • Finkelstein, S. A. 2003. Identifying pollen grains of Typha latifolia, Typha angustifolia and Typha × glauca. Canadian Journal of Botany 81:985–990.

    Article  Google Scholar 

  • Gaiser, E. E., T. E. Philippi, and B. E. Taylor. 1998. Distribution of diatoms among intermittent ponds on the Atlantic Coastal Plain: development of a model to predict drought periodicity from surface sediment assemblages. Journal of Paleolimnology 20:71–90.

    Article  Google Scholar 

  • Galatowitsch, S. M., N. O. Anderson, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19:733–755.

    Google Scholar 

  • Gleason, H. A. and A. Cronquist. 1963. Manual of Vascular Plants of Northeastern United States and Adjacent Canada. D. Van Nostrand, New York, NY, USA.

    Google Scholar 

  • Goldsmith, F. B. and C. M. Harrison. 1976. Description and analysis of vegetation. p. 85–156. In S. B. Chapman (ed.) Methods in Plant Ecology. Blackwell Science, Oxford, UK.

    Google Scholar 

  • Jackson, D. A. and H. H. Harvey. 1989. Biogeographic association in fish assemblages. Ecology 70:1472–1484.

    Article  Google Scholar 

  • Jackson, S. T. 1990. Pollen Source Area and Representation in Small Lakes of the Northeastern United States. Review of Palaeobotany and Palynology 63:53–76.

    Article  Google Scholar 

  • Jackson, S. T., R. P. Futyma, and D. A. Wilcox. 1988. A paleoecological test of a classical hydrosere in the Lake Michigan dunes. Ecology 69:928–936.

    Article  Google Scholar 

  • Janssen, C. R. 1966. Recent pollen spectra from the deciduous and coniferous forests of northeastern Minnesota: a study in pollen dispersal. Ecology 47:804–825.

    Article  Google Scholar 

  • Janssen, C. R. 1967. Stevens Pond: A post-glacial pollen diagram from a small Typha swamp in northwestern Minnesota, interpreted from pollen indicators and surface samples. Ecological Monographs 37:145–172.

    Article  Google Scholar 

  • Janssen, C. R. 1973. Local and regional pollen deposition. p. 31–42. In H. J. B. Birks and R. G. West (eds.) Quaternary Plant Ecology. Blackwell, Oxford, UK.

    Google Scholar 

  • Janssen, C. R. 1984. Modern pollen assemblages and vegetation in the Myrtle Lake Peatland, Minnesota. Ecological Monographs 54: 213–252.

    Article  Google Scholar 

  • Johansen, J. R. 1999. Diatoms of aerial habitats. p. 264–273. In E. F. Stoermer and J. P. Smol (eds.) The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Kapp, R. O., O. K. Davis, and J. E. King. 2000. Ronald O. Kapp’s Pollen and Spores, 2nd edition. American Association of Stratigraphic Palynologists Foundation Publication, College Station, TX, USA.

    Google Scholar 

  • Krammer, K. and H. Lange-Bertalot. 1986–1991. Bacillariophyceae. Susswasser-flora von Mitteleuropa 2(1–4). Gustav Fischer, Stuttgart, Germany.

    Google Scholar 

  • Lee, G.-A., A. M. Davis, D. G. Smith, and J. H. McAndrews. 2004. Identifying fossil wild rice (Zizania) pollen from Cootes Paradise, Ontario. Journal of Archaeological Science 31:411–421.

    Article  Google Scholar 

  • Legendre, P. and L. Legendre. 1998. Numerical Ecology, 2nd English edition. Elsevier, Amsterdam, The Netherlands.

    Google Scholar 

  • Lynch, E. A. and K. Saltonstall. 2002. Paleoecological and genetic analyses provide evidence for recent colonization of native Phragmites australis populations in a Lake Superior wetland. Wetlands 22:637–646.

    Article  Google Scholar 

  • McAndrews, J. H., A. A. Berti, and G. Norris. 1973. Key to the Quaternary Pollen and Spores of the Great Lakes Region. Royal Ontario Museum. Toronto, Ontario, Canada.

    Google Scholar 

  • Moore, P. D., J. A. Webb, and M. E. Collinson. 1991. Pollen Analysis, 2nd edition. Blackwell, Oxford, UK.

    Google Scholar 

  • Nicholls, M. S. and C. D. K. Cook. 1986. The function of pollen tetrads in Typha (Typhaceae). Veroeffentlichungen des Geobotanischen Institutes des Eidgenoessische Technische Hochschule Stiftung Ruebel in Zuerich 87:112–119.

    Google Scholar 

  • Overpeck, J. T., T. Webb, III, and I. C. Prentice. 1985. Quantitative interpretation of fossil pollen spectra: dissimilarity coefficients and the method of modern analogs. Quaternary Research 23:87–108.

    Article  Google Scholar 

  • Parsons, R. W. and I. C. Prentice. 1981. Statistical approaches to R-values and the pollen-vegetation relationship. Review of Palaeobotany and Palynology 32:127–152.

    Article  Google Scholar 

  • Redfield, A. C. 1972. Development of a New England salt marsh. Ecological Monographs 42:201–236.

    Article  Google Scholar 

  • Rohlf, F. J. 1997. NTSYS-pc: A numerical taxonomy and multivariate analysis system, version 2.02. Exeter Software, Setauket, NY, USA.

    Google Scholar 

  • Salgado-Labouriau, M. L. and M. Rinaldi. 1990. Palynology of Gramineae of the Venezuelan mountains. Grana 29:119–128.

    Article  Google Scholar 

  • Smith, S. G. 1967. Experimental and natural hybrids in North American Typha (Typhaceae). American Midland Naturalist 78:257–287.

    Article  Google Scholar 

  • Squires, L. and A. G. van der Valk. 1992. Water-depth tolerances of the dominant emergent macrophytes of the Delta Marsh, Manitoba. Canadian Journal of Botany 70:1860–1867.

    Article  Google Scholar 

  • Stockmarr, J. 1971. Tablets with spores used in absolute pollen analysis. Pollen et spores 13:615–621.

    Google Scholar 

  • Stoermer, E. F. and J. P. Smol. (eds.). 1999. The Diatoms: Applications for the Environmental and Earth Sciences. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Sugita, S. 1994. Pollen representation of vegetation in Quaternary sediments: theory and method in patchy vegetation. Journal of Ecology 82:881–897.

    Article  Google Scholar 

  • Tomlinson, P. B. 1994. The Botany of Mangroves. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Von Post, L. 1916. Forest tree pollen in south Swedish peat bog deposits, lecture to the 16th convention of Scandinavian naturalists, Kristiana (Oslo). Translated by M. B. Davis and K. Faegri (1967). Pollen et spores 9:375–401.

    Google Scholar 

  • Walker, D. 1970. Direction and rate in some British post-glacial hydroseres. p. 117–139. In D. Walker and R. G. West (eds.) Studies in the Vegetational History of the British Isles. Cambridge University Press. Cambridge, UK.

    Google Scholar 

  • Webb, T., III. 1974. Corresponding patterns of pollen and vegetation in Lower Michigan: a comparison of quantitative data. Ecology 55:17–28.

    Article  Google Scholar 

  • Wilcox, D. A. and H. A. Simonin. 1987. A chronosequence of aquatic macrophyte communities in dune ponds. Aquatic Botany 28: 227–242.

    Article  Google Scholar 

  • Willard, D. A., L. M. Weimer, and W. L. Riegel. 2001. Pollen assemblages as paleoenvironmental proxies in the Florida Everglades. Review of Palaeobotany and Palynology 113:213–235.

    Article  PubMed  Google Scholar 

  • Winkler, M. G. 1988. Effect of climate on development of two Sphagnum bogs in south-central Wisconsin. Ecology 69:1032–1043.

    Article  Google Scholar 

  • Winter, J. G. and H. C. Duthie. 2000. Stream epilithic, epipelic and epiphytic diatoms: Habitat fidelity and use in biomonitoring. Aquatic Ecology 34:345–353.

    Article  Google Scholar 

  • Yang, J. R. and H. C. Duthie. 1994. Diatom paleoecology of East Lake, Ontario: A 5400 year record of limnological change. p. 555–571. In D. Marino and M. Montresor (eds.) Proceedings of the 13th International Diatom Symposium. Biopress Limited, Bristol, UK.

    Google Scholar 

  • Yu, Z., J. H. McAndrews, and D. Siddiqi. 1996. Influences of Holocene climate and water levels on vegetation dynamics of a lake-side wetland. Canadian Journal of Botany 74:1602–1615.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sarah A. Finkelstein.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Finkelstein, S.A., Davis, A.M. Modern pollen rain and diatom assemblages in a Lake Erie coastal marsh. Wetlands 25, 551–563 (2005). https://doi.org/10.1672/0277-5212(2005)025[0551:MPRADA]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2005)025[0551:MPRADA]2.0.CO;2

Key Words

Navigation