Skip to main content
Log in

Phytoplankton and water quality in a shallow lake: A response to secondary salinization (Argentina)

  • Published:
Wetlands Aims and scope Submit manuscript

Abstract

This study analyzes the phytoplankton structure and dynamics, as well as the main limnological characteristics in Los Coipos Lake, located in the Reserva Ecológica Costanera Sur (Buenos Aires, Argentina). Phytoplankton generic composition was studied before (April–June 1998), during (July 1998–December 1999), and after (January–October 2003) pumping from the Puelche aquifer waters, characterized by extremely high conductivity values. The capacity of natural recovery from salt contamination was analyzed. The 1998–1999 parameters were obtained from a technical database (Aguas Argentinas water supply company), while two-monthly samples were collected and analyzed between January and October 2003. Decrease and replacement of genera was related to the conductivity increase; recovery of the number of genera was recorded once the input ceased. Chlorophyceae and Cyanophyceae were responsible for the greatest phytoplankton densities. During ground-water input, four high phytoplankton density events were recorded. One hundred fifty-three infrageneric phytoplanktonic and tichoplanktonic taxa were registered during 2003, together with high total phytoplankton densities. Phytoplankton structure and dynamics did not seem to be regulated by dissolved salt content in the post-pumping period.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Literature cited

  • Alcocer, J. and U. T. Hammer. 1998. Saline lake ecosystems of Mexico. Aquatic Ecosystem Health and Management 1:291–315.

    Article  Google Scholar 

  • A.P.H.A. 1992. Standard Methods for the Examination of Water and Wastewaters. 18th edition. American Public Health Association, Washington, DC, USA.

    Google Scholar 

  • Bengtsson, L. and T. Hellström. 1992. Wind induced resuspension in a small shallow lake. Hydrobiologia 241:163–172.

    Google Scholar 

  • Blinn, D. W., S. A. Halse, A. M. Pinder, R. J. Shiel, and J. M. McRae. 2004. Diatom and micro invertebrate communities and environmental determinants in the western Australian wheatbelt: a response to salinization. Hydrobiologia 528:229–248.

    Article  Google Scholar 

  • Boulton, A. J. and M. A. Brock. 1999. Australian Freshwater Ecology: Proceses and Management. Gleneagles, Publishing, Adelaides, Australia.

    Google Scholar 

  • Codignotto, J. O. 2001. Informe sobre la calidad de aguas de los pozos de la reserva de las lagunas Coipos, Gaviotas y el Rio de la Plata. Suministro de agua y remediación. Propuesta. Departamento de Ciencias Geológicas. Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina.

    Google Scholar 

  • Davis, T. J., D. Blasco, and M. Carbonell. 1996. Manual de Convención Ramsar. Una Guía Internacional. Oficina de la Convención Ramsar, Dirección General de Conservación de la Naturaleza, Ministerio de Medio Ambiente, Madrid, España.

    Google Scholar 

  • Faggi, A. M. and M. Cagnoni. 1987. Parque Natural Costanera Sur. Las comunidades vegetales. Parodiana 5:135–159.

    Google Scholar 

  • Filipello, A. M. and J. López de Casenave. 1993. Variación estacional de la comunidad de aves acuáticas de la reserva Costanera Sur. Revista del Museo Argentino de Cs. Naturales “B. Rivadavia” 4:1–15.

    Google Scholar 

  • Flower, R. J. 2001. Change, stress, sustainability and aquatic ecosystem resilience in North African wetland lakes during the 20th century: an introduction to integrated biodiversity studies within the CASSARINA Project. Aquatic Ecology 35:261–280.

    Article  Google Scholar 

  • García de Emiliani, M. O. 1993. Seasonal succession of phytoplankton in a lake of the Paraná River floodplain, Argentina. Hydrobiologia 264:101–114.

    Article  Google Scholar 

  • Hellström T. 1991. The effect of resuspension on algal production in a shallow lake. Hydrobiologia 213:183–190.

    Article  Google Scholar 

  • Izaguirre, I., I. O’Farrell, F. Unrein, R. Sinistro, M. dos Santos Afonso, and G. Tell. 2004. Algal assamblages across a wetland, from a shallow lake to relictual oxbow lakes (Lower Paraná River, South America). Hydrobiologia 511:25–36.

    Article  CAS  Google Scholar 

  • Izaguirre, I. and A. Vinocur. 1994. Algal assemblages from shallow lakes of the Salado River Basin (Argentina). Hydrobiología 289: 57–64.

    Article  Google Scholar 

  • James, W. F. and J. W. Barko 1994. Macrophyte influences on sediment resuspension and export in a shallow impoundment. Lake and Reservoir Management 10:95–102.

    Article  Google Scholar 

  • Jansson, M., P. Blomqvist, A. Josson, and A-K. Bregtröm. 1996. Nutrient limitation of bacterioplankton, autotrophic and mixotrophic phytoplankton, and heterotrophic nanoflagellates in Lake Örträsket. Limnology and Oceanography 41:1552–1559.

    Article  CAS  Google Scholar 

  • Kalff, J. 2002. Limnology. Prentice Hall, Montreal, Quebec, Canada.

    Google Scholar 

  • Koch, E. W. 1996. Hydrodynamics of a shallow Thalassia testidinum bed in Florida, USA. p. 105–109, In J. Kuo, R. Philips, D. I. Walker, and H. Kirkman (eds.) Seagrass Biology: Proceeding of an International Workshop, Rottnest Island, Western Australia. Sciences UWA, Perth.

  • Kraemer, R. A., K. Choudhury, and E. Kampa. 2001. Protecting Water Resources: Pollution Prevention. Secretariat of the International Conference on Freshwater, Bonn, Germany.

    Google Scholar 

  • Mackereth, F., J. Hiron, and J. Talling. 1978. Water Analysis: Some revised methods for limnologists. Freshwater Biological Association Scientific Publication 36:1–120.

    Google Scholar 

  • Marker, A. F. H., C. A. Crowther, and R. J. M. Gunn. 1980. Methanol and acetone as solvents for estimating chlorophyll and phaeopigments by spectrophotometry. Engebnisse der Limnologie 14:52–69.

    CAS  Google Scholar 

  • Mirabdullayev, I. M., I. M. Joldasova, Z. A. Mustafaeva, S. Kazakhbaev, S. A. Lyubimova, and B. A. Tashmukhamedov. 2003. Succession of the ecosystems of the Aral Sea during its transition from oligohaline to polyhaline water body. Journal of Marine Systems 47:101–107.

    Article  Google Scholar 

  • Munawar, M. 1972. Ecological studies of Eugleninae in certain polluted and unpolluted environments. Hydrobiologia 36:105–128.

    Article  Google Scholar 

  • O’Farrell, I., R. Sinistro, I. Izaguirre, and F. Unrein. 2003. Do steady state assemblages occur in shallow lentic environments from wetlands? Hydrobiologia 502:197–209.

    Article  Google Scholar 

  • Pedros-Alio, C., J. I. Calderon-Paz, M. MacLean, G. Medina, C. Marrasé, J. M. Gasol, and N. G. Guixa-Boixereu. 2000. The microbial food web along salinity gradients. Microbial Ecology 32:143–155.

    CAS  Google Scholar 

  • Pielou, E. C. 1966. The measurement of diversity in different types of biological collections. The Biologist, 13:131–144.

    Google Scholar 

  • Reynolds, C. S. 1997. Vegetation Processes in the Pelagic: a Model for Ecosystem Theory. Excellence in Ecology, Ecology Institute, Oldendorf, Germany.

    Google Scholar 

  • Reynolds, C. S., V. Huszar, C. Kruk, L. Naselli-Flores, and S. Melo. 2002. Journal of Plankon Research 24:417–428.

    Article  Google Scholar 

  • Scheffer, M. 1998. Ecology of Shallow Lakes. Chapman & Hall, London, UK.

    Google Scholar 

  • Sodergaard, M., P. Kristensen, and E. Jeppesen. 1992. Phosphorus release from resuspended sediment in the shallow and wind-exposed Lake Arreso Denmark. Hydrobiologia 22:91–99.

    Article  Google Scholar 

  • Utermöhl, H. 1958. Zur Vervollkommung der quantitativen Phytoplankton-Methodik. Internationale Vereinigung fur theoretische und Angewandte Limnologie Mitteilungen 9:1–38.

    Google Scholar 

  • van Donk, E. and W. J. van de Bund. 2002. Impact of submerged macrophytes including charophytes on phyto- and zooplankton communities: allelopathy versus other mechanisms. Aquatic Botany 72:261–274.

    Article  Google Scholar 

  • Venrick, E. L. 1978. How many cells to count?. p. 167–180. In A. Sournia (ed.) Phytoplankton Manual. UNESCO, Paris, France.

    Google Scholar 

  • Williams, W. D. 1998. Salinity as a determinant of the structure of biological communities in salt lakes. Hydrobiologia, 381:191–201.

    Article  Google Scholar 

  • Williams, W. D. 2001. Anthropogenic salinisation of inland waters. Hydrobiologia 466:329–337.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fazio, A., O’Farrell, I. Phytoplankton and water quality in a shallow lake: A response to secondary salinization (Argentina). Wetlands 25, 531–541 (2005). https://doi.org/10.1672/0277-5212(2005)025[0531:PAWQIA]2.0.CO;2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1672/0277-5212(2005)025[0531:PAWQIA]2.0.CO;2

Key Words

Navigation