, 25:252 | Cite as

Field evidence for the potential of waterbirds as dispersers of aquatic organisms

  • Iris Charalambidou
  • Luis Santamaría


Field collections during November of green-winged teal (Anas crecca), mallard (Anas platyrhynchos), and coot (Fulica atra) feces in Denmark, England, and France were used to examine the potential of waterbirds to disperse aquatic plant, algae, and invertebrate species across Europe. A total of 216 fecal samples were collected, of which 28% contained intact seeds of common wetland plants (Scirpus spp.,Eleocharis spp.,Chenopodium spp.), 7% contained algae oogonia (Chara spp.), and 14% contained invertebrate diapause eggs that included ephippia (Daphnia spp.) and non-ephippial eggs. Many propagules, such asChenopodium seeds,Charophyte oogonia, and invertebrate diapause eggs, were of small size, indicating that either consumption rates or the probability to pass the gut intact is higher for smaller propagule sizes. We found averages of from 0.1 to 1.9 intact seeds and 0.1 to 0.9 intact oogonia and diapause eggs per duck or coot dropping. Our data indicate that propagules of aquatic plants, algae, and invertebrates can be deposited in feces by these waterbird species. We did not measure the viability of propagules and, therefore, have not shown that these propagules escaped digestion to the extent that viability was not altered. Although any given bird may carry few intact propagules, the thousands of waterbirds moving among wetlands collectively are potentially effective at dispersing many species of aquatic organisms.

Key Words

Anas crecca Anas platyrhynchos Fulica atra Scirpus Eleocharis Chenopodium Chara Daphnia zoochory seed dispersal plant dispersal 

Literature Cited

  1. Amezaga, J. M., L. Santamaria, and A. J. Green. 2002. Biotic wetland connectivity—supporting a new approach for wetland policy. Acta Oecologica 23:213–222.CrossRefGoogle Scholar
  2. Bohonak, A. J. and D. G. Jenkins. 2003. Ecological and evolutionary significance of dispersal by freshwater invertebrates. Ecology Letters 6:783–796.CrossRefGoogle Scholar
  3. Bruinzeel, L. W., M. R. van Eerden, R. H. Drent, and J. T. Vulink. 1997. Scaling metabolisable energy intake and daily energy expenditure in relation to the size of herbivorous waterfowl: limits set by available foraging time and digestive performance. p. 187–214.In M. R. van Eerden (ed.) Patchwork, Patch Use, Habitat Exploitation and Carrying Capacity for Water Birds in Dutch Freshwater Wetlands. Min. Verkeer en Waterstaat, D. G. Rijkswaterstaat, Lelystad, the Netherlands.Google Scholar
  4. Charalambidou, I. and L. Santamaría. 2002. Waterbirds as endozoochorous dispersers of aquatic organisms: a review of experimental evidence. Acta Oecologica 23:165–176.CrossRefGoogle Scholar
  5. Charalambidou, I., H. A. M. Ketelaars, and L. Santamaría. 2003. Endozoochory by ducks: influence of developmental stage ofBythotrephes diapause eggs on dispersal probability. Diversity and Distributions 9:367–374.CrossRefGoogle Scholar
  6. Clausen, P., B. A. Nolet, A. D. Fox, and M. Klaassen. 2002. Longdistance endozoochorous dispersal of submerged macrophyte seeds by migratory waterbirds in Northern Europe—a critical review of possibilities and limitations. Acta Oecologica 23:191–203.CrossRefGoogle Scholar
  7. Cohen, J. 1988. Statistical Power Analysis for the Behavioral Sciences (2nd edition). Erlbaum, Hillsdale, NJ, USA.Google Scholar
  8. Crawley, M. J. 1993. GLIM for Ecologists. Blackwell, Oxford, UK.Google Scholar
  9. Darwin, C. 1859. On the Origin of Species by Means of Natural Selection. John Murray, London, UK.Google Scholar
  10. De Meester, L., A. Gómez, B. Okamura, and K. Schwenk. 2002. The Monopolization Hypothesis and the dispersal-gene flow paradox in aquatic organisms. Acta Oecologica 23:121–135.CrossRefGoogle Scholar
  11. De Vlaming, V. L. and V. W. Proctor. 1968. Dispersal of aquatic organisms: viability of seeds recovered from the droppings of captive killdeer and mallard ducks. American Journal of Botany 55: 20–26.CrossRefGoogle Scholar
  12. Figuerola, J. and A. J. Green. 2002. Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshwater Biology 47:483–494.CrossRefGoogle Scholar
  13. Figuerola, J., A. J. Green, and L. Santamaría. 2002. Comparative dispersal effectiveness of wigeongrass seeds by waterfowl wintering in south-west Spain: quantitative and qualitative aspects. Journal of Ecology 90:989–1001.CrossRefGoogle Scholar
  14. Figuerola, J., A. J. Green, and L. Santamaría. 2003. Passive internal transport of aquatic organisms by waterfowl in Doñana, southwest Spain. Global Ecology and Biogeography 12:427–436.CrossRefGoogle Scholar
  15. Flößner, D. 1972. Krebstiere, Crustacea; Kiemen- und Blattflusser, Branchiopoda; Fischläuse, Branchiura. p. 1–485.In G. Teil (ed.) Die Tierwelt Deutschlands 60. Fisher Verlag, Jena, Germany.Google Scholar
  16. Freeland, J. R., L. R. Noble, and B. Okamura. 2000. Genetic consequences of the metapopulation biology of a facultatively sexual freshwater invertebrate. Journal of Evolutionary Biology 13:383–395.CrossRefGoogle Scholar
  17. Green, A. J., J. Figuerola, and M. I. Sánchez. 2002. Implications of waterbird ecology for the dispersal of aquatic organisms. Acta Oecologia 23:177–189.CrossRefGoogle Scholar
  18. Hintze, J. 2001. NCSS and PASS. Number Cruncher Statistical Systems. Kaysville, UT, Google Scholar
  19. Holt-Mueller, M. and A. G. van der Valk. 2002. The potential role of ducks in wetland seed dispersal. Wetlands 22:170–178.CrossRefGoogle Scholar
  20. Jakobsson, A. and O. Eriksson. 2000. A comparative study of seed number, seed size, seedling size and recruitment in grassland plants. Oikos 88:494–502.CrossRefGoogle Scholar
  21. Jenkins, D. G., and M. O. Underwood. 1998. Zooplankton may not disperse readily in wind, rain or waterfowl. Hydrobiologia 387/388:15–21.CrossRefGoogle Scholar
  22. Mellors, W. K. 1975. Selective predation of ephippialDaphnia and the resistance of ephippial eggs to digestion. Ecology 56:974–980.CrossRefGoogle Scholar
  23. Monval, J. Y. and J. Y. Pirot. 1989. Results of the IWRB international census 1967–1986. International Waterfowl Research Bureau, Slimbridge, England. Special Publication No. 8.Google Scholar
  24. Pascher, A. 1988. Susswasserflora von Mitteleuropa. Gustav Fischer Verlag, Stuttgart Germany.Google Scholar
  25. Pirot, J. Y. 1981. Partage alimentaire et spatial des zones humides camarguaises par 5 espèces de canards de surface en hivernage et en transit. Ph.D. Dissertation. L'Université Pierre et Marie Curie, Paris, France.Google Scholar
  26. Proctor, V. W. 1959. Dispersal of fresh-water algae by migratory waterbirds. Science 130:623–624.CrossRefPubMedGoogle Scholar
  27. Proctor, V. W. 1962. Viability ofChara oospores taken from migratory waterbirds. Ecology 43:528–529.CrossRefGoogle Scholar
  28. Proctor, V. W. and C. R. Malone. 1965. Further evidence of the passive dispersal of small aquatic organisms via the intestinal tract of birds. Ecology 46:728–729.CrossRefGoogle Scholar
  29. Proctor, V. W., C. R. Malone, and V. L. De Vlaming. 1967. Dispersal of aquatic organisms: viability of disseminules recovered from the intestinal tract of captive killdeer. Ecology 48:672–676.CrossRefGoogle Scholar
  30. Ramsar Convention Bureau. 1996. Wetlands and biological diversity: cooperation between, the convention of wetlands of international importance especially as waterfowl habitat (Ramsar, Iran, 1971) and the convention on biological diversity. Document UNEP/CBD/COP.3.Inf.21.Google Scholar
  31. Ridley, H. N. 1930. The Dispersal of Plants Throughout the World. L. Reeve and Co. Ltd., Ashford, United Kingdom.Google Scholar
  32. Steidl, R. J. and L. Thomas. 2001. Power analysis and experimental design. p. 14–36.In S. M. Scheiner and J. Gurevitch (eds.) Design and Analysis of Ecological Experiments. Oxford University Press, Oxford, UK.Google Scholar
  33. Scott, D. A. and P. M. Rose. 1996. Atlas of Anatidae Populations in Africa and Western Eurasia. Wetlands International, Wageningen, The Netherlands. Wetlands International Publication. No. 41.Google Scholar
  34. StatSoft, Inc. 2001. STATISTICA (data analysis software system), version Google Scholar
  35. Tamisier, A. 1971. Régime alimentaire des sarcelles d'hiverAnas crecca en Camargue. Alauda 39:262–311.Google Scholar
  36. Thomas, G. J. 1982. Autumn and winter feeding ecology of waterfowl at the Ouse Washes, England. Journal of the Zoological Society of London 197:131–172.Google Scholar
  37. Traveset, A. 1998. Effect of seed passage through vertebrate frugivores' guts on germination: a review. Perspectives in Plant Ecology, Evolution and Systematics 1/2:151–190.Google Scholar
  38. Tutin, T. G., V. H. Heywood, N. A. Burges, D. H. Valentine, S. M. Walters, and D. A. Webb. 1980. Flora Europaea, 2nd Edition. Cambridge University Press, Cambridge, UK.Google Scholar
  39. Wright, S. 1951. The genetic structure of populations. Eugenics 15:323–354.Google Scholar

Copyright information

© Society of Wetland Scientists 2005

Authors and Affiliations

  • Iris Charalambidou
    • 1
  • Luis Santamaría
    • 1
  1. 1.Centre for Limnology, Department of Plant-Animal InteractionsNetherlands Institute of Ecology (NIOO-KNAW)MaarssenThe Netherlands

Personalised recommendations