, Volume 25, Issue 2, pp 430–438 | Cite as

Flooding constraints on tree (Taxodium distichum) and herb growth responses to elevated CO2

  • J. Patrick Megonigal
  • Cheryl D. Vann
  • Amelia A. Wolf


Elevated CO2 generally stimulates C3-type photosynthesis, but it is unclear how an increase in CO2 assimilation will interact with other factors that influence plant growth. In wetlands, the response of plants to elevated CO2 will interact with soil saturation, particularly in forested wetlands where soil saturation is a strong regulator of plant productivity. We performed a four-month experiment to determine whether elevated CO2 and flooding interact to influence the growth of a flood-tolerant tree (Taxodium distichum) and a flood-tolerant herbaceous emergent macrophyte (Orontium aquaticum). Seedlings were grown in glass-houses at two CO2 levels (350 and 700 μL L−1) crossed with two water depths (5 cm above and ≥5 cm below the soil surface). We hypothesized that elevated CO2 would increase photosynthesis regardless of water depth and species; however, we also expected flooding to prevent elevated CO2 from increasing the growth of the tree species due to O2 limitation or other physiological stresses associated with reduced soil environments. We found that elevated CO2 increased whole-plant photosynthesis in both species regardless of the flooding treatment. ForT. distichum, this higher photosynthetic rate resulted in greater biomass only in the non-flooded treatment. This result suggests that some factor related to flooding constrained the biomass response of the flooded woody plants to elevated CO2. In contrast, elevated CO2 increasedO. aquaticum biomass regardless of the flooding regime, perhaps because it occurs in wetter landscape positions thanT. distichum and is less sensitive to flooding. We conclude that flooding may limit plant growth responses to elevated CO2, particularly in woody plant species.

Key Words

elevated CO2 emergent aquatic macrophyte photosynthesis wetland Taxodium global change flooding 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Baker, J. T., A. L. Hartwell, K. J. Boote, and N. B. Pickering. 1997. Rice responses to drought under carbon dioxide enrichment. 2. Photosynthesis and evapotranspiration. Global Change Biology 3:129–138.CrossRefGoogle Scholar
  2. Blanch, S., G. Ganf, and K. Walker. 1999. Growth and resource allocation in response to flooding in the emergent sedgeBolboschoenus medianus. Aquatic Botany 63:145–160.CrossRefGoogle Scholar
  3. Boamfa, E. I., P. C. Ram, M. B. Jackson, J. Reuss, and F. J. M. Harren. 2003. Dynamic aspects of alcoholic fermentation of rice seedlings in response to anaerobiosis and to complete submergence; relationship to submergence tolerance. Annals of Botany 91:279–290.CrossRefPubMedGoogle Scholar
  4. Conner, W. H. and J. W. Day, Jr. 1976. Productivity and composition of a bald cypress-water tupelo site and a bottomland hardwood site in a Louisiana swamp. American Journal of Botany 63:1354–1364.CrossRefGoogle Scholar
  5. Crawford, R. M. M. and R. Braendle. 1996. Oxygen deprivation stress in a changing environment. Journal of Experimental Botany 47:145–459.CrossRefGoogle Scholar
  6. Cubasch, U., G. A. Meehl, G. J. Boer, R. J. Stouffer, M. Dix, A. Noda, C. A. Senior, S. Raper, and K. S. Yap. 2001. Projections of future climate change. p. 525–582.In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  7. Curtis, P. S. 1996. A meta-analysis of leaf gas exchange and nitrogen in trees grown under elevated carbon dioxide. Plant, Cell and Environment 19:127–137.CrossRefGoogle Scholar
  8. Curtis, P. S., B. G. Drake, P. W. Leadley, W. J. Arp, and D. F. Whigham. 1989. Growth and senescence in plant communities exposed to elevated CO2 concentrations on an estuarine marsh. Oecologia 78:20–26.CrossRefGoogle Scholar
  9. Dickson, R. E., M. D. Coleman, D. E. Riemenschneider, J. G. Isebrands, G. D. Hogan, and D. F. Karnosky. 1998. Growth of five hybrid poplar genotypes exposed to interacting elevated CO2 and O3. Canadian Journal of Forest Research 28:1706–1716.CrossRefGoogle Scholar
  10. Drake, B. G., M. S. Muehe, G. Peresta, M. A. Gonzàlez-Meler, and R. Matamala. 1996a. Acclimation of photosynthesis, respiration and ecosystem carbon flux of a wetland on Chesapeake Bay, Maryland to elevated atmospheric CO2 concentration. Plant and Soil 187:111–118.CrossRefGoogle Scholar
  11. Drake, B. G., G. Peresta, E. Beugeling, and R. Matamala. 1996b. Long-term elevated CO2 exposure in a Chesapeake Bay wetland: ecosystem gas exchange, primary production, and tissue nitrogen. p. 197–214In G. W. Koch and H. A. Mooney (eds.) Carbon Dioxide and Terrestrial Ecosystems. Academic Press, Inc., San Diego, CA, USA.CrossRefGoogle Scholar
  12. Hungate, B. A., M. Reichstein, P. Dijkstra, D. Johnson, G. Hymus, J. D. Tenhunen, and B. G. Drake. 2002. Evapotranspiration and soil water content in a scrub-oak woodland under carbon dioxide enrichment. global Change Biology 8:289–298.CrossRefGoogle Scholar
  13. Jackson, R. B., O. E. Sala, J. M. Paruelo, and H. A. Mooney. 1998. Ecosystem water fluxes for two grasslands in elevated CO2: a modeling analysis. Oecologia 113:537–546.CrossRefGoogle Scholar
  14. Kirkman, L. K. and R. R. Sharitz. 1993. Growth in controlled water regimes of three grasses common in freshwater wetlands of the southeastern USA. Aquatic Botany 44:345–359.CrossRefGoogle Scholar
  15. Koch, M. S., I. A. Mendelssohn, and K. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35:399–408.CrossRefGoogle Scholar
  16. Koizumi, H., T. Kibe, S. Mariko, T. Ohtsuka, T. Nakadai, W. Mo, H. Toda, N. Seiichi, and K. Kobayashi. 2001. Effect of free-air CO2 enrichment (FACE) on CO2 exchange at the flood-water surface in a rice paddy field. New Phytologist 150:231–239.CrossRefGoogle Scholar
  17. Körner, C. 2000. Biosphere responses to CO2 enrichment. Ecological Applications 10:1590–1619.Google Scholar
  18. Kozlowski, T. T. 1984. Plant Responses to Flooding of Soil. Bioscience 34:162–167.CrossRefGoogle Scholar
  19. Kozlowski, T. T. and S. G. Pallardy. 2002. Acclimation and adaptive responses of woody plants to environmental stresses. The Botanical Review 68:270–334.CrossRefGoogle Scholar
  20. Kreuzwieser, J., S. Fürniss, and H. Rennenberg. 2002. Impact of waterlogging on the N-metabolism of flood tolerant and non-tolerant tree species. Plant, Cell and Environment 25:1039–1049.CrossRefGoogle Scholar
  21. Lenssen, J. P. M., F. B. J. Menting, W. J. van der Putten, and C. W. P. M. Blom. 1999. Effects of sediment type and water level on biomass production of wetland plant species. Aquatic Botany 64:151–165.CrossRefGoogle Scholar
  22. Loustau, D., B. A. Hungate, and B. G. Drake. 2001. Water, nitrogen, rising atmospheric CO2 and terrestrial productivity. p. 123–167.In J. Roy, B. Saugier, and H. A. Mooney (eds.) Terrestrial Global Productivity. Academic Press, San Diego, CA, USA.CrossRefGoogle Scholar
  23. Megonigal, J. P. 1996. Methane production and oxidation in a future climate. Ph.D. Dissertation. Duke University, Durham, NC, USA.Google Scholar
  24. Megonigal, J. P., W. H. Conner, S. Kroeger, and R. R. Sharitz. 1997. Aboveground production in southeastern floodplain forests: A test of the subsidy-stress hypothesis. Ecology 78:370–384.Google Scholar
  25. Megonigal, J. P. and F. P. Day. 1992. Effects of flooding on root and shoot production of bald cypress in large experimental enclosures. Ecology 73:1182–1193.CrossRefGoogle Scholar
  26. Megonigal, J. P. and W. H. Schlesinger. 1997. Enhanced CH4 emissions from a wetland soil exposed to elevated CO2. Biogeochemistry 37:77–88.CrossRefGoogle Scholar
  27. Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands. Van Nostrand Reinold, New York, NY, USA.Google Scholar
  28. Oechel, W. C., S. Cowles, N. Grulke, S. J. Hastings, B. Lawrence, T. Prudhomme, G. Riechers, B. Strain, D. Tissue, and G. Vourlitis. 1994. Transient nature of CO2 fertilzation in arctic tundra. Nature 371:500–502.CrossRefGoogle Scholar
  29. Oren, R., D. S. Ellsworth, K. H. Johnsen, N. Phillips, B. E. Ewers, C. Maler, K. V. R. Schäfer, H. McCarthy, G. Hendry, S. G. McNulty, and G. G. Katul. 2001a. Soil fertility limits carbon sequestration by forest ecosystems in a CO2-enriched atmosphere. Nature 411:469–471.CrossRefPubMedGoogle Scholar
  30. Oren, R., N. Phillips, B. E. Ewers, D. E. Pataki, and J. P. Megonigal. 1999. Sap-flux-scaled transpiration responses to light, vapor pressure deficit, and leaf area reduction in a floodedTaxodium distichum forest. Tree Physiology 19:337–347.PubMedGoogle Scholar
  31. Oren, R., J. S. Sperry, B. e. Ewers, D. E. Pataki, N. Phillips, and J. P. Megonigal. 2001b. Sensitivity of mean canopy stomatal conductance to vapor pressure deficit in a floodedTaxodium distichum forest: hydraulic and non-hydraulic effects. Oecologia 126:21–29.CrossRefGoogle Scholar
  32. Pataki, D. E., R. Oren, and D. T. Tissue. 1998. Elevated carbon dioxide does not affect average canopy stomatal conductance ofPinus taeda L. Oecologia 8:47–52.CrossRefGoogle Scholar
  33. Pendall, E., S. Bridgham, P. J. Hanson, B. Hungate, D. W. Kicklighter, D. W. Johnson, B. E. Law, Y. Luo, J. P. Megonigal, M. Olsrud, M. G. Ryan, and S. Wan. 2004. Below-ground process responses to elevated CO2 and temperature: A discussion of observations, measurement methods, and models. New Phytologist 162:311–322.CrossRefGoogle Scholar
  34. Pezeshki, S. R., R. D. DeLaune, and P. H. Anderson. 1999. Effect of flooding on elemental uptake and biomass allocation in seedlings of three bottomland tree species. Journal of Plant Nutrition 22:1481–1494.CrossRefGoogle Scholar
  35. Pezeshki, S. R., J. H. Pardue, and R. D. DeLaune. 1996. Leaf gas exchange and growth of flood-tolerant and flood-sensitive tree species under low soil redox conditions. Tree Physiology 16:453–458.PubMedGoogle Scholar
  36. Poff, N. L., M. M. Brinson, and J. W. Day Jr., 2002. Aquatic Ecosystems and Global Climate Change. Pew Center on Global Climate Change, Washington, DC, USA.Google Scholar
  37. Ramaswamy, V., O. Boucher, J. Haigh, D. Hauglustaine, J. Haywood, G. Myhre, T. Nakajima, G. Y. Shi, and S. Solomon. 2001. Radiative forcing of climate change. p. 236–287.In J. T. Houghton, Y. Ding, D. J. Griggs, M. Noguer, P. J. van der Linden, X. Dai, K. Maskell, and C. A. Johnson (eds.) Climate Change 2001: The Scientific Basis. Contribution of Working Group I to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, UK.Google Scholar
  38. Rosen, C. J. and R. M. Carlson. 1984. Influence of root zone oxygen stress on potassium and ammonium absorption by myrobalan plumPrunus cerasifera rootstock. Plant and Soil 80:345–354.CrossRefGoogle Scholar
  39. SAS Institute. 1987. SAS/STAT guide for personal computers, Version 6 edition. SAS Institute, Cary, NC, USA.Google Scholar
  40. Snowden, R. E. D. and B. D. Wheeler. 1993. Iron toxicity to fen plant species. Journal of Ecology 81:35–46.CrossRefGoogle Scholar
  41. Tanaka, A., R. Loe, and S. A. Navasero. 1966. Some mechanisms involved in the development of iron toxicity symptoms in the rice plant. Soil Science and Plant Nutrition 12:29–33.Google Scholar
  42. Tissue, D. T. and W. C. Oechel. 1987. Response ofEriophorum vaginatum to elevated CO2 and temperature in the Alaskan tussock tundra. Ecology 68:401–410.CrossRefGoogle Scholar
  43. Vann, C. D. 2000. Productivity and methane production in a future CO2-enriched atmosphere. M.S. Thesis. George Mason University, Fairfax, VA, USA.Google Scholar
  44. Vann, C. D. and J. P. Megonigal. 2003. Elevated CO2 and water depth regulation of methane emissions: Comparison of woody and non-woody wetland plant species. Biogeochemistry 63:117–134.CrossRefGoogle Scholar
  45. Vartapetian, B. B. and M. B. Jackson. 1997. Plant adaptation to anaerobic stress. Annals of Botany 79:3–20.CrossRefGoogle Scholar
  46. Wullschleger, S. D. and R. J. Norby. 2001. Sap velocity and canopy transpiration for a 12-year-old sweetgum stand exposed to free-air CO2 enrichment. New Phytologist 8:489–498.CrossRefGoogle Scholar
  47. Zak, D. R., K. S. Pregitzer, P. S. Curtis, C. S. Vogel, W. E. Holmes, and J. Lussenhop. 1999. Atmospheric CO2, Soil-N availability, and allocation of biomass and nitrogen byPopulus tremuloides. Ecological Applications 10:34–46.Google Scholar
  48. Ziska, L. H., W. Weerakoon, O. S. Namuco, and R. Pamplona. 1996. The influence of nitrogen on the elevated CO2 response in field-grown rice. Australian Journal of Plant Physiology 23:45–52.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2005

Authors and Affiliations

  • J. Patrick Megonigal
    • 1
  • Cheryl D. Vann
    • 1
  • Amelia A. Wolf
    • 1
  1. 1.Smithsonian Environmental Research CenterEdgewaterUSA

Personalised recommendations