Advertisement

Wetlands

, Volume 25, Issue 2, pp 375–391 | Cite as

The effect of hydraulic retention time on the removal of pollutants from sewage treatment plant effluent in a surface-flow wetland system

  • Sylvia Toet
  • Richard S. P. Van Logtestijn
  • Ruud Kampf
  • Michiel Schreijer
  • Jos T. A. Verhoeven
Article

Abstract

We evaluated the effect of four hydraulic retention times (HRT, 0.3, 0.8, 2.3, and 9.3 days) on pollutant removal in a surface-flow wetland system for polishing tertiary effluent from a sewage treatment plant (STP). The removal efficiency of pollutants at these HRTs was based on mass budgets of the water inputs and outputs in parallel ditches, which together with a presettling basin, made up the wetland system. Fecal coliform and N-removal efficiencies in the ditches were enhanced by increasing the HRT, with only little removal of fecal coliforms during spring-summer at a HRT of 0.3 days. A HRT of 4 days turned out to be required to meet the desired bathing water standard for fecal coliforms (103 cfu 100 ml−1) and the future standard of ammonium (1 mg N l−1) all year. An annual N-removal efficiency of approximately 45% can be accomplished in the ditches at this HRT, corresponding to an annual N mass loading rate of 150 g N m−2 yr−1. Annual P removal was not improved by increasing the HRT even up to 9.3 days, largely because of the still high P mass loading rate (14 g P m−2 yr−1) in combination with relatively low P input concentrations. Substantial P removal can probably only be achieved at HRTs longer than 15 days, which will not be feasible for the situation investigated because of the large land area that would be required to reach such long HRTs. The future P standard (1 mg P 1−1) can therefore only be met by additional chemical P removal. In a densely populated country such as the Netherlands, adequate polishing of tertiary STP effluent in surfaceflow wetlands with similar goals as for this wetland is restricted to small and medium-sized STPs. The simultaneous use of these treatment wetlands for other functions, such as nature conservation, recreation, and flood control, however, would permit the use of relatively larger land areas.

Key Words

treatment wetlands wastewater hydraulic loading rate nitrogen phosphorus COD turbidity fecal coliforms water budgets mass budgets removal processes 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adcock, P. W. and G. G. Ganf. 1994. Growth characteristics of three macrophyte species growing in a natural and constructed wetland system. Water Science & Technology 29:95–102.Google Scholar
  2. Ansola, G., C. Fernández, and E. De Luis. 1995. Removal of organic matter and nutrients from urban wastewater by using an experimental emergent aquatic macrophyte system. Ecological Engineering 5:13–19.CrossRefGoogle Scholar
  3. Bastian, R. K. and J. Benforado. 1988. Water quality functions of wetlands: natural and management systems. p. 87–97.In D. D. Hook (ed.) The Ecology and Management of Wetlands, volume 1, first edition. Timber Press, Portland, OR, USA.Google Scholar
  4. Bavor, H. J., D. J. Roser, and S. McKersie. 1987. Nutrient removal using shallow lagoon-solid matrix macrophyte systems. p. 227–235.In K. R. Reddy and W. H. Smith (eds.) Aquatic Plants for Water Treatment and Resource Recovery. Magnolia Publishers Inc., Orlando, FL, USA.Google Scholar
  5. Bremner, J. M. and C. S. Mulvaney. 1982. Nitrogen-Total. p. 595–624.In A. L. Page, R. H. Miller, and D. R. Keeney (eds.) Agronomy 9: Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties, 2nd ed. Soil Science Society of America, Inc., Madison, WI, USA.Google Scholar
  6. Brix, H. and H.-H. Schierup. 1989. The use of aquatic macrophytes in water-pollution control. AMBIO 18:100–107.Google Scholar
  7. Carter, V., M. S. Bedinger, R. P. Novitzki, and W. O. Wilen. 1979. Water resources and wetlands. p. 344–376.In Wetlands Functions and Values: The State of our Understanding. American Water Resources Association, Minneapolis, MN, USA.Google Scholar
  8. Cedergreen Forchhammer, N. 1999. Production potential of aquatic plants in systems mixing floating and submerged macrophytes. Freshwater Biology 41:183–191.CrossRefGoogle Scholar
  9. Chambers, P. A., E. E. Prepas, M. L. Bothwell, and H. R. Hamilton. 1989. Roots versus shoots in nutrient uptake by aquatic macrophytes in flowing waters. Canadian Journal of Fisheries and Aquatic Sciences 46:435–439.CrossRefGoogle Scholar
  10. Claassen, T. H. L. 1996. Het 3D-schakelsysteem: van tweesporenbeleid naar driesporenbeleid; ecotechnologisch van randverschijnsel naar centrumpositie. p. 141–153.In S. P. Klapwijk (ed.) 25 jaar toegepast onderzoek waterbeheer, Jubileumsymposium STOWA 13 September 1996. STOWA rapportnr 11, Utrecht (in Dutch).Google Scholar
  11. DB Environmental Laboratories. 1999. A demonstration of submerged aquatic vegetation/limerock treatment system technology for removing phosphorus from Everglades agricultural area waters, final report. DB Environmental Laboratories, Inc., Rockledge, FL, USA.Google Scholar
  12. Denny, P. 1987. Mineral cycling by wetland plants-a review. Archiv für Hydrobiologie—Ergebnisse der Limnologie 27:1–25.Google Scholar
  13. Dierberg, F. E. and P. L. Brezonik. 1983. Tertiary treatment of municipal wasterwater by cypress domes. Water Research 17:1027–1040.CrossRefGoogle Scholar
  14. Duever, M. J. 1990. Hydrology. p. 61–89.In B. C. Patten (ed.) Wetlands and Shallow Continental Water Bodies, volume 1. SPB Academic Press by, The Hague, The Netherlands.Google Scholar
  15. Dykyjová, D. 1978. 3.4 Nurient uptake by littoral communities of helophytes. p. 257–277.In D. Dykyjová and J. Květ (eds.) Pond Littoral Ecosystems. Springer-Verlag, Berlin, Germany.Google Scholar
  16. Eugelink, A. H. 1998. Phosphorus uptake and active growth ofElodea canadensis Michx. andElodea nuttallii (Planch.) St. John. Water Science & Technology 37:59–65.CrossRefGoogle Scholar
  17. Faulkner, S. P. and C. J. Richardson. 1989. Physical and chemical characteristics of freshwater wetland soils. p. 41–72.In D. A. Hammer (ed.) Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural. Lewis Publishers, Inc., Chelsea, MI, USA.Google Scholar
  18. Fong, P., R. M. Donohoe and J. B. Zedler. 1994. Nutrient concentration in tissue of the macroalgaEnteromorpha as a function of nutrient history: an experimental evaluation using field microcosms. Marine Ecology Progress Series 106:273–281.CrossRefGoogle Scholar
  19. Gearheart, R. A. and B. A. Finney. 1996. Criteria for design of free surface constructed wetlands based upon a coupled ecological and water quality model.In Proceedings of 5th International Conference on Wetland Systems for Water Pollution Control. Institute for Water Provision, Water Quality and Waste Management, Universität für Bodenkultur, Vienna, Austria.Google Scholar
  20. Gearheart, R. A. 1992. Use of constructed wetlands to treat domestic wastewater, city of Arcata, California. Water Science & Technology 26:1625–1637.Google Scholar
  21. Gearheart, R. A., F. Klopp, and G. Allen. 1989. Constructed free surface wetlands to treat and receive wastewater: pilot project to full scale. p. 121–137.In D. A. Hammer (ed.) Constructed Wetlands for Wasterwater Treatment: Municipal, Industrial and Agricultural. Lewis Publishers, Inc., Chelsea, MI, USA.Google Scholar
  22. Gerke, S., L. A. Baker, and Y. Xu. 2001. Nitrogen transformations in a wetland receiving lagoon effluent: Sequential model and implications for water reuse. Water Research 35:3857–3866.CrossRefPubMedGoogle Scholar
  23. Gersberg, R. M., R. A. Gearheart, and M. Ives. 1989. Pathogen removal in constructed wetlands. p. 431–445.In D. A. Hammer (ed.) Constructed Wetlands for Wastewater Treatment: Municipal, Industrial and Agricultural. Lewis Publishers, Inc., Chelsea, MI, USA.Google Scholar
  24. Gosselink, J. G. and R. E. Turner. 1978. The role of hydrology in freshwater wetland ecosystems. p. 63–78.In R. E. Good, D. F. Whigham, and R. L. Simpson (eds.) Freshwater Wetlands. Academic Press, New York, NY, USA.Google Scholar
  25. Greenway, M. and A. Woolley. 1999. Constructed wetlands in Queensland: Performance efficiency and nutrient bioaccumulation. Ecological Engineering 12:39–55.CrossRefGoogle Scholar
  26. Gumbricht, T. 1993. Nutrient removal processes in freshwater submersed macrophyte systems. Ecological Engineering 2:1–30.CrossRefGoogle Scholar
  27. Hammer, D. A. and R. K. Bastian. 1989. Wetlands ecosystems: natural water purifiers? p. 5–19. In D. A. Hammer (ed.) Constructed Wetlands for Wastewater Treatment Municipal, Industrial and Agricultural. Lewis Publishers, Inc., Chelsea, MI, USA.Google Scholar
  28. Haan, C. T., B. J. Barfield, and J. C. Hayes. 1994. Design Hydrology and Sedimentology for Small Catchments. Academic Press, Inc., San Diego, CA, USA.Google Scholar
  29. Hey, D. L., A. L. Kenimer, and K. R. Barrett 1994. Water quality improvement by four experimental wetlands. Ecological Engineering 3:381–397.CrossRefGoogle Scholar
  30. Howard-Williams, C. 1985. Cycling and retention of nitrogen and phosphorus in wetlands: a theoretical and applied perspective. Freshwater Biology 15:391–431.CrossRefGoogle Scholar
  31. Janes, R. A., J. W. Eaton, and K. Hardwick. 1996. The effects of floating mats ofAzolla filiculoides Lam. andLemna minuta Kunth on the growth of submerged macrophytes. Hydrobiologia 340:23–26.CrossRefGoogle Scholar
  32. Johnston, C. A. 1991. Sediment and nutrient retention by freshwater wetlands: effects on surface water quality. Critical Reviews in Environmental Control 21:491–565.CrossRefGoogle Scholar
  33. Kadlec, R. H. 1995. Overview: surface flow constructed wetlands. Water Science & Technology 32:1–12.CrossRefGoogle Scholar
  34. Kadlec, R. H. and R. L. Knight. 1996. Treatment Wetlands. CRC Press, Inc., Boca Raton, FL, USA.Google Scholar
  35. Kadlec, R. H., R. L. Knight, J. Vymazal, H. Brix, P. Cooper, and R. Haberl. 2000. Constructed Wetlands for Pollution Control: Processes, Performance, Design and Operation. IWA Publishing, London, UK.Google Scholar
  36. Kampf, R., J. Graansma, H. Van Dokkum, E. Foekema, and T. Claassen. 2003. Increasing the natural values of treated waste-water on the island Texel, The Netherlands.In Proceedings of the Conference ‘Efficient Use and Management of Water for Urban Supply,’ Tenerife, Spain.Google Scholar
  37. Khalid, R. A., W. H. Patrick, Jr. and R. D. DeLaune. 1977. Phosphorus sorption characteristics of flooded soils. Soil Science Society of American Journal 41:305–310.Google Scholar
  38. Knight, R. L., R. W. Ruble, R. H. Kadlec, and S. Re ed. 1993. Wetlands for wastewater treatment: performance database. p. 35–58.In G. A. Moshiri (ed.) Constructed Wetlands for Water Quality Improvement. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  39. Knight, R. L., B. H. Winchester, and J. C. Higman. 1985. Carolina Bays—feasibility for effluent advanced treatment and disposal. Wetlands 4:177–203.Google Scholar
  40. Koerselman, W. and B. Beltman. 1988. Two models for the calculation of the evapotranspiration term in the water budget of peatlands from routine weather data.In International Symposium on Hydrology of Wetlands in Semi-Arid and Arid Regions, Seville, Spain.Google Scholar
  41. Machate, T., E. Heuermann, K.-W. Schramm, and A. Kettrup. 1999. Purification of fuel and nitrate contaminated ground water using a free water surface constructed wetland plant. Journal of Environmental Quality 28:1665–1673.CrossRefGoogle Scholar
  42. Moore, J. A., S. M. Skarda, and R. Sherwood. 1994. Wetland treatment of pulp mill wastewater. Water Science & Technology 29: 241–247.Google Scholar
  43. Moustafa, M. Z. 1999. Analysis of phosphorus retention in free-water surface treatment wetlands. Hydrobiologia 392:41–53.CrossRefGoogle Scholar
  44. Moustafa, M. Z., M. J. Chimney, T. D. Fontaine, G. Shih, and S. Davis. 1996. The response of a freshwater wetland to long-term “low level” nutrient loads—marsh efficiency. Ecological Engineering 7:15–33.CrossRefGoogle Scholar
  45. Nichols, D. S. 1983. Capacity of natural wetlands to remove nutrients from wastewater. Journal of the Water Pollution Control Federation 55:495–505.Google Scholar
  46. Okurut, T. O. 2001. Plant growth and nutrient uptake in a tropical constructed wetland. p. 451–462.In J. Vymazal (ed.) Transformations of Nutrients in Natural and Constructed Wetlands. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
  47. Ozimek, T., E. Pieczyńska, and A. Hankiewicz. 1991. Effects of filamentous algae on submerged macrophyte growth: a laboratory experiment. Aquatic Botany 41:309–315.CrossRefGoogle Scholar
  48. Reddy, K. R. and T. A. DeBusk. 1987. State-of-the-art utilization of aquatic plants in water pollution control. Water Science & Technology 19:61–79.Google Scholar
  49. Rejmánková, E. 1982. The role of duckweeds (Lemnaceae) in small wetland water bodies of Czechoslovakia. p. 397–403.In B. Gopal, R. E. Turner, R. G. Wetzel, and D. F. Whigham (eds.) Wetlands, Ecology and Management. National Institute of Ecology and International Scientific Publications, Jaipur, India.Google Scholar
  50. Sand-Jensen, K. and J. Borum. 1991. Interactions among phytoplankton, periphyton, and macrophytes in temperate freshwaters and estuaries. Aquatic Botany 41:137–175.CrossRefGoogle Scholar
  51. Saunders, D. L. and J. Kalff. 2001. Nitrogen retention in wetlands, lakes and rivers. Hydrobiologia 443:205–212.CrossRefGoogle Scholar
  52. Schierup, H. H., H. Brix, and B. Lorenzen. 1990. Spildevandsrensning i Rodzoneanloeg. Botanical Institute, Aarhus University, Aarhus, Denmark.Google Scholar
  53. Schreijer, M., R. Kampf, S. Toet, and J. T. A. Verhoeven. 2000. Nabehandeling van RWZI-Effluent tot Bruikbaar Oppervlakte-water in een Moerassysteem—Resultaten van een 4-jarig Demonstratieproject op Praktijkschaal op RWZI Everstekoog, Texel, 1995–1998. Hoogheemraadschap van Uitwaterende Sluizen in Hollands Noorderkwartier, Edam (in Dutch).Google Scholar
  54. Schreijer, M., R. Kampf, S. Toet, and J. Verhoeven. 1997. The use of constructed wetlands to upgrade treated sewage effluents before discharge to natural surface water in Texel Island, The Netherlands—Pilot study. Water Science & Technology 35:231–237.CrossRefGoogle Scholar
  55. Sundblad Tonderski, K. and A. Berggren. 2001. Nitrogen and phosphorus removal in a wetland treating sludge dewatering effluent. p. 187–200.In J. Vymazal (ed.) Transformations of Nutrients in Natural and Constructed Wetlands. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
  56. Toet, S. 2003. A treatment wetland used for polishing tertiary effluent from a sewage treatment plant: performance and processes. Ph. D. Dissertation. Utrecht University, Utrecht, The Netherlands.Google Scholar
  57. Toet, S., L. Hersbach, and J. T. A. Verhoeven. 2003a. Periphyton biomass and nutrient dynamics in a treatment wetland in relation to substratum, hydraulic retention time and nutrient removal. Archiv für Hydrobiologie—Monographic Studies 139:361–392.Google Scholar
  58. Toet, S., L. H. F. A. Huibers, R. S. P. Van Logtestijn, and J. T. A. Verhoeven. 2003b. Denitrification in the periphyton associated with plant shoots and in the sediment of a wetland system supplied with sewage treatment plant effluent. Hydrobiologia 501:29–44.CrossRefGoogle Scholar
  59. Ulrich, K. E. and T. M. Burton. 1985. The effects of nitrate, phosphate and potassium fertilization on growth and nutrient uptake patterns ofPhragmites australis (Cav.) Trin. ex Steudel. Aquatic Botany 21:53–62.CrossRefGoogle Scholar
  60. Veenstra, S. 1998. The Netherlands. p. 289–314.In J. Vymazal, H. Brix, P. F. Cooper, M. B. Green, and R. Haberl (eds.) Constructed Wetlands for Wastewater Treatment in Europe. Baekhuys Publishers, Leiden, The Netherlands.Google Scholar
  61. Verhoeven, J. T. A. and J. Van der Toorn. 1990. Marsh eutrophication and wastewater treatment. p. 571–585.In B. C. Patten (ed.) Wetlands and Shallow Continental Water Bodies, volume 1. SPB Academic Publishing by, The Hague, The Netherlands.Google Scholar
  62. Vymazal, J., H. Brix, P. F. Cooper, M. B. Green, and R. Haberl (eds.). 1998. Constructed Wetlands for Wastewater Treatment in Europe. Backhuys Publishers, Leiden, The Netherlands.Google Scholar
  63. Wetzel, R. G. 1983. Limnology, second edition. Saunders College Publishing, Philadelphia, PA, USA.Google Scholar
  64. Wittgren, H. B., T.-A. Stenström, and K. Sundblad. 1996. Removal of indicator microorganisms in surface-flow treatment wetlands. I/19: 1–8.In Proceedings of 5th International Conference on Wetland Systems for Water Pollution Control, volume 1. Institute for Water Provision, Water Quality and Waste Management, Universität für Bodenkultur, Vienna, Austria.Google Scholar
  65. Zar, J. H. 1984. Biostatistical Analysis, second edition. Prentice Hall, Englewood Cliffs, NJ, USA.Google Scholar
  66. Zirschky, J. and S. C. Re ed. 1988. The use of duckweed for wastewater treatment. Journal of the Water Pollution Control Federation 60:1253–1258.Google Scholar

Copyright information

© Society of Wetland Scientists 2005

Authors and Affiliations

  • Sylvia Toet
    • 1
  • Richard S. P. Van Logtestijn
    • 1
  • Ruud Kampf
    • 2
  • Michiel Schreijer
    • 2
  • Jos T. A. Verhoeven
    • 1
  1. 1.Department of GeobiologyUtrecht UniversityUtrechtThe Netherlands
  2. 2.Waterboard Hollands NoorderkwartierPurmerendThe Netherlands

Personalised recommendations