, Volume 29, Issue 1, pp 372–386

The legacy of wetland drainage on the remaining peat in the Sacramento — San Joaquin Delta, California, USA

  • Judith Z. Drexler
  • Christian S. de Fontaine
  • Steven J. Deverel


Throughout the world, many extensive wetlands, such as the Sacramento-San Joaquin Delta of California (hereafter, the Delta), have been drained for agriculture, resulting in land-surface subsidence of peat soils. The purpose of this project was to study the in situ effects of wetland drainage on the remaining peat in the Delta. Peat cores were retrieved from four drained, farmed islands and four relatively undisturbed, marsh islands. Core samples were analyzed for bulk density and percent organic carbon. Macrofossils in the peat were dated using radiocarbon age determination. The peat from the farmed islands is highly distinct from marsh island peat. Bulk density of peat from the farmed islands is generally greater than that of the marsh islands at a given organic carbon content. On the farmed islands, increased bulk density, which is an indication of compaction, decreases with depth within the unoxidized peat zone, whereas, on the marsh islands, bulk density is generally constant with depth except near the surface. Approximately 55–80% of the original peat layer on the farmed islands has been lost due to land-surface subsidence. For the center regions of the farmed islands, this translates into an estimated loss of between 2900–5700 metric tons of organic carbon/hectare. Most of the intact peat just below the currently farmed soil layer is over 4000 years old. Peat loss will continue as long as the artificial water table on the farmed islands is held below the land surface.

Key Words

bulk density compaction marsh microbial oxidation organic carbon radiocarbon age determination subsidence 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. AOAC International. 1997. Official methods of analysis of AOAC International, 16th edition. AOAC International, Arlington, VA, USA.Google Scholar
  2. Armentano, R. V. 1980. Drainage of organic soils as a factor in the world carbon cycle. BioScience 30: 825–30.CrossRefGoogle Scholar
  3. Atwater, B. F. 1980. Attempts to correlate late Quaternary climatic records between San Francisco Bay, the Sacramento-San Joaquin Delta, and the Mokelumne River, California. Ph.D. Dissertation. University of Delaware, Newark, DE, USA.Google Scholar
  4. Atwater, B. F. and D. F. Belknap. 1980. Tidal-wetland deposits of the Sacramento-San Joaquin Delta, California. Pacific Coast Paleogeography Symposium 4: 89–103.Google Scholar
  5. Atwater, B. F., S. G. Conard, J. N. Dowden, C. W. Hedel, and R. L. MacDonald. 1979. History, landforms, and vegetation of the estuary’s tidal marshes. p. 347–85, San Francisco Bay: The Urbanized Estuary: Proceedings of the Fifty-Eighth Annual Meeting of the Pacific Division/American Association for the Advancement of Science. California Academy of Sciences, San Francisco, San Francisco State University, San Francisco, CA, USA.Google Scholar
  6. Brandof, K. L. 1992. Impact of ditching and road construction on Red Lake Peatland. p. 163–72. In H. E. Wright, Jr., B. A. Coffin, and N. E. Aaseng (eds.) The Patterned Peatlands of Minnesota. University of Minnesota Press, Minneapolis, MN, USA.Google Scholar
  7. Burke, W. 1963. Drainage of blanket peat at Glenamory. p. 809–17, In R. A. Robertson (ed.) Proceedings of the Second International Peat Congress. USSR, Leningrad.Google Scholar
  8. California Department of Water Resources. 1980. Subsidence of organic soils in the Sacramento-San Joaquin Delta. Central District, Sacramento, CA, USA.Google Scholar
  9. Chan, K. Y. 2002. Bulk density. p. 128–30. In R. Lal (ed.) Encyclopedia of Soil Science. Taylor & Francis Group, Oxford, UK.Google Scholar
  10. Church, J. A. and N. J. White. 2006. A 20th century acceleration in global sea-level rise. Geophysical Research Letters 33: L01602, doi:10.1029/2005GL024826.CrossRefGoogle Scholar
  11. Conner, W. H. and J. W. Day, Jr. 1991. Variations in vertical accretion in a Louisiana swamp. Journal of Coastal Research 7: 617–22.Google Scholar
  12. Dachnowski-Stokes, A. P. 1936. Peat land in the Pacific Coast states in relation to land and water resources. U.S. Department of Agriculture, Washington, DC, USA. Miscellaneous Publication 248.Google Scholar
  13. Day, J. W. Jr., J. D. Gunn, W. J. Folan, A. Yanez-Arancibia, and B. P. Horton. 2007. Emergence of complex societies after sea level stabilized. Eos, Transactions, American Geophysical Union 88: 169–70.CrossRefGoogle Scholar
  14. Deverel, S. J. and D. A. Leighton. 2008. Subsidence causes and rates in the Sacramento-San Joaquin Delta and Suisun Marsh. San Francisco Estuary and Watershed Science, in press.Google Scholar
  15. Deverel, S. J., D. A. Leighton, and M. R. Finlay. 2007. Processes affecting agricultural drainwater quality and organic carbon loads in California’s Sacramento-San Joaquin Delta. San Francisco Estuary and Watershed Science. Vol. 5, Issue 2 [May 2007]. Article 2. http://repositories.cdlib.org/jmie/sfews/ vol5iss2/art2Google Scholar
  16. Deverel, S. J. and S. A. Rojstaczer. 1996. Subsidence of agricultural lands in the Sacramento-San Joaquin Delta, California: role of aqueous and gaseous carbon fluxes. Water Resources Research 32: 2359–67.CrossRefGoogle Scholar
  17. Deverel, S. J., B. Wang, and S. Rojstaczer. 1998. Subsidence of organic soils, Sacramento-San Joaquin Delta, California. p. 489–502. In J. W. Borchers (ed.) Land Subsidence Case Studies and Current Research. Association of Engineering Geologist Special Publication No. 8.Google Scholar
  18. Drexler, J. Z., C. S. de Fontaine, and D. L. Knifong. 2007. Age determination of the remaining peat in the Sacramento-San Joaquin Delta, California, USA. U.S. Geological SurveyOpen File Report 2007-1303. 2 pp.Google Scholar
  19. Everett, K. R. 1983. Histosols. p. 1–53. In L. P. Wilding, N. E. Smeck, and G. F. Hall (eds.) Pedogenesis and Soil Taxonomy, II. The Soil Orders. Elsevier Scientific Publishers, Amsterdam, The Netherlands.CrossRefGoogle Scholar
  20. Ewing, J. M. and M. J. Vepraskas. 2006. Estimating primary and secondary subsidence in an organic soil 15, 20, and 30 years after drainage. Wetlands 26: 119–30.CrossRefGoogle Scholar
  21. Gambolati, G., M. Putti, P. Teatini, M. Camporese, S. Ferraris, G. G. Stori, V. Nicoletti, S. Silvestri, F. Rizzetto, and L. Tosi. 2005. Peat land oxidation enhances subsidence in the Venice watershed. Eos, Transactions, American Geophysical Union 86: 217–24.CrossRefGoogle Scholar
  22. Gilbert, G. K. 1917. Hydraulic-mining debris in the Sierra Nevada. U.S. Geological Survey, U.S. Government Printing Office, Washington, DC, USA. Professional Paper 105.Google Scholar
  23. Givelet, N., G. Le Roux, A. Cheburkin, B. Chen, J. Frank, M. Goodsite, H. Kempter, M. Krachler, T. Noernberg, N. Rausch, S. Rheinberger, F. Roos-Barraclough, A. Sapkota, C. Scholz, and W. Shotyk. 2004. Suggested protocol for collecting, handling and preparing peat cores and peat samples for physical, chemical, mineralogical and isotopic analyses. Journal of Environmental Monitoring 6: 481–92.CrossRefPubMedGoogle Scholar
  24. Hambright, K. D. and T. Zohary. 1999. The Hula Valley (northern Israel) wetlands rehabilitation project. p. 173–180. In W. Streever (ed.) An International Perspective on Wetland Rehabilitation. Kluwer Academic Publishers, The Netherlands.Google Scholar
  25. Heiri, O., A. F. Lotter, and G. Lemcke. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments; reproducibility and comparability of results. Journal of Paleolimnology 25: 101–10.CrossRefGoogle Scholar
  26. Hickman, J. C. (ed.) The Jepson Manual. University of California Press, Berkeley, CA, USA.Google Scholar
  27. Ibanez, C., C. Antoni, J. W. Day, Jr., and A. Curco. 1997. Morphologic development, relative sea level rise and sustainable management and sediment in the Ebre Delta, Spain. Journal of Coastal Conservation 3: 191–202.CrossRefGoogle Scholar
  28. Ingebritsen, S. E. and M. E. Ikehara. 1999. Sacramento-San Joaquin Delta: the sinking heart of the state. p. 83–94. In D. Galloway, D. R. Jones, and S. E. Ingebritsen (eds.) Land Subsidence in the United States. Circular 1182. U.S. Geological Survey, Reston, VA, USA.Google Scholar
  29. Ingebritsen, S. E., M. E. Ikehara, D. L. Galloway, and D. R. Jones. 2000. Delta subsidence in California. U.S. Department of the Interior, U.S. Geological Survey, Reston, VA, USA. Fact Sheet FS-005-00, 4 pp.Google Scholar
  30. Kool, D. M., P. Buurman, and D. H. Hoekman. 2006. Oxidation and compaction of a collapsed peat dome in central Kalimantan. Geoderma 137: 217–25.CrossRefGoogle Scholar
  31. Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands, third edition. John Wiley & Sons, Inc., New York, NY, USA.Google Scholar
  32. Mount, J. and R. Twiss. 2005. Subsidence, sea level rise, seismicity in the Sacramento-San Joaquin Delta. San Francisco Estuary and Watershed Science Vol. 3, Issue 1 (March), http:// repositories.cdlib.org/jmie/sfews/vol3/issl/art5.Google Scholar
  33. Nieuwenhuis, H. S. and F. Schokking. 1997. Land subsidence in drained peat areas of the Province of Friesland, The Netherlands. Quarterly Journal of Engineering Geology 30: 37–48.CrossRefGoogle Scholar
  34. Penland, S. and K. E. Ramsey. 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. Journal of Coastal Research 6: 323–42.Google Scholar
  35. Price, J. S. and S. M. Schlotzhauer. 1999. Importance of shrinkage and compression in determining water storage changes in peat: the case of a mined peatland. Hydrological Processes 13: 2591–2601.CrossRefGoogle Scholar
  36. Prokopovich, N. P. 1985. Subsidence of peat in California and Florida. Bulletin of the Association of Engineering Geologists 22: 395–420.Google Scholar
  37. Reimer, P. J., M. G. L. Baillie, E. Bard, A. Bayliss, J. W. Beck, C. J. H. Bertrand, P. G. Blackwell, C. E. Buck, G. S. Burr, K. B. Cutler, P. E. Damon, R. L. Edwards, R. G. Fairbanks, M. Friedrich, T. P. Guilderson, A. G. Hogg, K. A. Hughen, B. Kromer, G. McCormac, S. Manning, C. B. Ramsey, R. W. Reimer, S. Remmele, J. R. Southon, M. Stuiver, S. Talamo, F. W. Taylor, J. van der Plicht, and C. E. Weyhenmeyer. 2004. IntCal04 terrestrial radiocarbon age calibration, 0–26 cal kyr BP. Radiocarbon 46: 1029–58.Google Scholar
  38. Rojstaczer, S. and S. J. Deverel. 1993. Time dependence in atmospheric carbon inputs from drainage of organic soils. Geophysical Research Letters 20: 1383–86.CrossRefGoogle Scholar
  39. Rojstaczer, S. and S. J. Deverel. 1995. Land subsidence in drained histosols and highly organic mineral soils of California. Soil Science Society of America Journal 59: 1162–67.CrossRefGoogle Scholar
  40. Rojstaczer, S. A., R. E. Hamon, S. J. Deverel, and C. A. Massey. 1991. Evaluation of selected data to assess the causes of subsidence in the Sacramento-San Joaquin Delta, California. U.S. Geological Survey, Sacramento, CA, USA. Open-File Report 91-0193, 16 pp.Google Scholar
  41. Schothorst, C. J. 1977. Subsidence of low moor peat soils in the western Netherlands. Geoderma 17: 265–91.CrossRefGoogle Scholar
  42. Stephens, J. C., L. H. Allen, Jr., and E. Chen. 1984. Organic soil subsidence. p. 107–22. In T. L. Holzer (ed.) Man-induced land subsidence. Reviews in Engineering Geology VI. Geological Society of America.Google Scholar
  43. Stuiver, M. and P. J. Reimer. 1993. Extended 14C data base and revised CALIB 3.0 14C age calibration program. Radiocarbon 35: 215–30.Google Scholar
  44. Thompson, J. 1957. The settlement geography of the Sacramento-San Joaquin Delta, California. Ph.D. Dissertation. Stanford University, Stanford, CA, USA.Google Scholar
  45. United States Department of Agriculture Soil Conservation Service. 2006. Keys to soil taxonomy. Tenth edition. ftp:// ftp-fc.sc.egov.usda.gov/NSSC/Soil_Taxonomy/keys/keys.pdfGoogle Scholar
  46. U.S. Salinity Laboratory Staff. 1954. Alkaline-earth carbonates by gravimetric loss of carbon dioxide. p. 105. In L. A. Richards (ed.) Diagnosis and improvement of saline and alkali soils, USDA Agricultural Handbook 60.Google Scholar
  47. Weir, W. W. 1950. Subsidence of peat lands of the Sacramento-San Joaquin Delta, California. Hilgardia 20: 37–56.Google Scholar
  48. Wells, L. E. 1995. Radiocarbon dating of Holocene tidal marsh deposits: Applications to reconstructing relative sea level changes in the San Francisco estuary. p. 3.95–3.102. In J. S. Noller, W. R. Lettis, and J. M. Sowers (eds.) Quaternary Geochronology and Paleoseismology. Nuclear Regulatory Commission, Washington, DC, USA.Google Scholar
  49. Wright, H. E., Jr. 1991. Coring tips. Journal of Paleolimnology 6: 37–49.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2009

Authors and Affiliations

  • Judith Z. Drexler
    • 1
  • Christian S. de Fontaine
    • 1
  • Steven J. Deverel
    • 2
  1. 1.California Water Science CenterU. S. Geological SurveySacramentoUSA
  2. 2.Hydrofocus, Inc.DavisUSA

Personalised recommendations