Wetlands

, Volume 28, Issue 4, pp 1028–1039

Assessing the use of multiseason QuickBird imagery for mapping invasive species in a Lake Erie coastal Marsh

  • Dana M. Ghioca-Robrecht
  • Carol A. Johnston
  • Mirela G. Tulbure
Article

Abstract

QuickBird multispectral satellite images taken in September 2002 (peak biomass) and April 2003 (pre-growing season) were used to map emergent wetland vegetation communities, particularly invasive Phragmites australis and Typha spp., within a diked wetland at the western end of Lake Erie. An unsupervised classification was performed on a nine-layer image stack consisting of all four spectral bands from both dates plus a September Normalized Difference Vegetation Index image. The resulting eight cover classes distinguished three monodominant genera (Phragmites australis, Typha spp., Nelumbo lutea), three multigenera plant communities (wet meadow, other non persistent emergents, woody vegetation), and two unvegetated cover types (water, bare soil). Field validation at 196 data points yielded an overall classification accuracy of 62%, with producer’s accuracy for the eight individual classes ranging from 41 to 91% and user’s accuracy from 17 to 90%. Three-fourths of areas designated as Phragmites were correctly mapped, but 14% were found to be cattail (Typha) during field validation. Lotus (Nelumbo lutea) beds were accurately mapped on multiseason imagery (producer’s accuracy = 91%); these beds had not yet emerged above water in April, but were fully developed in September. Other types of non persistent vegetation were confused with managed areas in which vegetation had been cut and burned to control invasive Phragmites. Multiseason QuickBird imagery is promising for distinguishing certain wetland plant species, but should be used with caution in highly managed areas where vegetation changes may reflect human alterations rather than phenological change.

Key Words

Phragmites remote sensing Typha wetland mapping 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Artigas, F. J. and J. Yang. 2006. Spectral discrimination of marsh vegetation types in the New Jersey meadowlands, USA. Wetlands 26: 271–77.CrossRefGoogle Scholar
  2. Arzandeh, S. and J. Wang. 2003. Monitoring the change of Phragmites distribution using satellite data. Canadian Journal of Remote Sensing 40: 2313–30.Google Scholar
  3. Bachmann, C. M., T. F. Donato, G. M. Lamela, W. J. Rhea, M. H. Bettenhausen, R. A. Fusina, K. R. Du Bois, J. H. Porter, and B. R. Truitt. 2002. Automatic classification of land cover on Smith Island, VA, using HyMAP imagery. IEEE Transactions on GeoScience and Remote Sensing 40: 2313–30.CrossRefGoogle Scholar
  4. Baker, C., R. Lawrence, C. Montagne, and D. Patten. 2006. Mapping wetlands and riparian areas using Landsat ETM+ imagery and decision-tree-based models. Wetlands 26: 465–74.CrossRefGoogle Scholar
  5. Brazner, J. C., N. P. Danz, G. J. Niemi, R. R. Regal, A. S. Trebitz, R. W. Howe, J. M. Hanowski, L. B. Johnson, J. J. H. Ciborowski, C. A. Johnston, E. D. Reavie, V. J. Brady, and G. V. Sgro. 2007. Evaluating geographic, geomorphic and human influences on Great Lakes wetland indicators: multi-assemblage variance partitioning. Ecological Indicators 7: 610–35.CrossRefGoogle Scholar
  6. Burton, T. M., D. G. Uzarski, and J. A. Genet. 2004. Invertebrate habitat use in relation to fetch and plant zonation in northern Lake Huron coastal wetlands. Aquatic Ecosystem Health & Management 7: 249–67.CrossRefGoogle Scholar
  7. Congalton, R. and K. Green. 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. Lewis Press, Boca Raton, FL, USA.Google Scholar
  8. Congalton, R. G. 1991. A review of assessing the accuracy of classifications of remotely sensed data. Remote Sensing of Environment 37: 35–46.CrossRefGoogle Scholar
  9. Cowardin, L. M., V. Carter, F. C. Golet, and E. T. La Roe. 1979. Classification of wetlands and deepwater habitats of the United States. U.S. Fish and Wildlife Service, Office of Biological Services, Washington, DC, USA. FWS/OBS-79/31.Google Scholar
  10. Ernst-Dottavio, C. L., R. M. Hoffer, and R. P. Mroczynski. 1981. Spectral characteristics of wetland habitats. Photogrammetric Engineering and Remote Sensing 47: 223–27.Google Scholar
  11. Hurd, J. D., D. L. Civco, M. S. Gilmore, S. Prisloe, and E. H. Wilson. 2006. Tidal wetland classification from Landsat imagery using an integrated pixel-based and object-based classification approach. American Society for Photogrammetry and Remote Sensing, 2006 Annual Conference, Reno, Nevada.Google Scholar
  12. Jensen, J. R., D. Cowen, J. D. Althausen, S. Narumalani, and O. Weatherbee. 1993a. An evaluation of the Coast Watch change detection protocol in South Carolina. Photogrammetric Engineering and Remote Sensing 59: 1039–46.Google Scholar
  13. Jensen, J. R., S. Narumalani, O. Weatherbee, and H. E. Mackey. 1993b. Measurement of seasonal and yearly cattail and waterlily changes using multidate SPOT panchromatic data. Photogrammetric Engineering and Remote Sensing 59: 519–25.Google Scholar
  14. Johnston, C. A., T. Brown, T. Hollenhorst, P. Wolter, N. Danz, and G. Niemi. In press. GIS in support of ecological indicator development. Manual of Geographic Information Systems. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, USA.Google Scholar
  15. Johnston, C. A., B. L. Bedford, M. Bourdaghs, T. Brown, C. B. Frieswyk, M. Tulbure, L. Vaccaro, and J. B. Zedler. 2007a. Plant species indicators of physical environment in Great Lakes coastal wetlands. Journal of Great Lakes Research 33(Special Issue 3): 106–24.CrossRefGoogle Scholar
  16. Johnston, C. A., T. Watson, and P. T. Wolter. 2007b. Sixty-three years of land alteration in Erie Township. Journal of Great Lakes Research 33(Special Issue 3): 253–68.CrossRefGoogle Scholar
  17. Johnston, C. A. and P. Meysembourg. 2002. Comparison of the Wisconsin and National Wetlands Inventories. Wetlands 22: 386–405.CrossRefGoogle Scholar
  18. Kroll, R. W. and R. L. Meeks. 1985. Muskrat population recovery following habitat re-establishment near southwestern Lake Erie. Wildlife Society Bulletin 13: 483–86.Google Scholar
  19. Leica Geosystems. 2003. ERDAS Field Guide, seventh edition. Leica Geosystems GIS and Mapping, LLC, Atlanta, GA, USA.Google Scholar
  20. Lillesand, T. M. and R. W. Kiefer. 2000. Remote Sensing and Image Interpretation. John Wiley and Sons Inc., New York, NY, USA.Google Scholar
  21. Lopez, R. D., C. M. Edmonds, A. C. Neale, T. S. Slonecker, K. B. Jones, D. T. Heggem, J. G. Lyon, E. Jaworski, D. Garofalo, and D. Williams. 2004. Accuracy assessments of airborne hyperspectral data for mapping opportunistic plant species in freshwater coastal wetlands. p. 253–267. In R. S. Lunetta and J. G. Lyon (eds.) Remote Sensing and GIS Accuracy Assessment. CRC Press, New York, NY, USA.Google Scholar
  22. Madden, M. 2004. Remote sensing and GIS methodologies for vegetation mapping of invasive exotics. Weed Technology 18: 1457–63.CrossRefGoogle Scholar
  23. Maheu-Giroux, M. and S. de Blois. 2007. Landscape ecology of Phragmites australis invasion in networks of linear wetlands. Landscape Ecology 22: 285–301.CrossRefGoogle Scholar
  24. NOAA (National Oceanic and Atmospheric Administration). 2006. NOAA and the Estuary Restoration Act restoration plan database. http://www8.nos.noaa.gov/era_rpi/exported/70_54_48. pdfGoogle Scholar
  25. Osezmi, S. L. and M. E. Bauer. 2002. Satellite remote sensing of wetlands. Wetlands Ecology and Management 10: 381–402.CrossRefGoogle Scholar
  26. Pengra, B. W., C. A. Johnston, and T. R. Loveland. 2007. Mapping an invasive plant, Phragmites australis, in coastal wetlands using the EO-1 Hyperion hyperspectral sensor. Remote Sensing of Environment 108: 74–81.CrossRefGoogle Scholar
  27. Phillips, R. L., O. Beeri, and E. S. De Keyser. 2005. Remote wetland assessment for Missouri Coteau prairie glacial basins. Wetlands 25: 335–49.CrossRefGoogle Scholar
  28. Rutchey, K. and L. Vilchek. 1999. Air photointerpretation and satellite imagery analysis techniques for mapping cattail coverage in a northern Everglades impoundment. Photogrammetric Engineering and Remote Sensing 65: 185–91.Google Scholar
  29. Sawaya, K. E., L. G. Olmanson, N. J. Heinert, P. L. Brezonik, and M. E. Bauer. 2003. Extending satellite remote sensing to local scales: land and water resource monitoring using highresolution imagery. Remote Sensing of Environment 88: 144–56.CrossRefGoogle Scholar
  30. Schmidt, K. S. and A. K. Skidmore. 2003. Spectral discrimination of vegetation types in a coastal wetland. Remote Sensing of Environment 85: 92–108.CrossRefGoogle Scholar
  31. Sersland, C. A., C. A. Johnston, and J. Bonde. 1995. Assessing wetland vegetation with GPS linked color video image mosaics. p. 53–62. In P. Mausel (ed.). Proc. Biennial Workshop on Videography and Color Photography in Resource Assessment, 15th, Terra Haute, IN. 1–3 May 1995. American Society for Photogrammetry and Remote Sensing, Bethesda, MD, USA.Google Scholar
  32. Spanglet, H. J., S. L. Ustin, and E. Rejmankova. 1998. Spectral reflectance characteristics of California subalpine marsh plant communities. Wetlands 18: 307–19.CrossRefGoogle Scholar
  33. TNC (The Nature Conservancy). 2006. Erie Marsh Preserve. http:// www.nature.org/wherewework/northamerica/states/michigan/ preserves/art 16985.htmlGoogle Scholar
  34. Tulbure, M. G., C. A. Johnston, and D. L. Auger. 2007. Rapid invasion of a Great Lakes coastal wetland by non-native Phragmites australis and Typha. Journal of Great Lakes Research 33(Special Issue 3): 269–79.CrossRefGoogle Scholar
  35. USDA (U.S. Department of Agriculture). 2008. Plants database. http://plants.usda.govGoogle Scholar
  36. Wilcox, K. L., S. A. Petrie, L. A. Maynard, and S. W. Meyer. 2003. Historical distribution and abundance of Phragmites australis at Long Point, Lake Erie, Ontario. Journal of Great Lakes Research 29: 664–80.Google Scholar
  37. Wolter, P. T., C. A. Johnston, and G. J. Niemi. 2005. Mapping submerged aquatic vegetation in the U.S. Great Lakes using Quickbird satellite data. International Journal of Remote Sensing 26: 5255–74.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2008

Authors and Affiliations

  • Dana M. Ghioca-Robrecht
    • 1
    • 2
  • Carol A. Johnston
    • 1
  • Mirela G. Tulbure
    • 1
  1. 1.Department of Biology and MicrobiologySouth Dakota State UniversityBrookingsUSA
  2. 2.RoanokeUSA

Personalised recommendations