Wetlands

, Volume 29, Issue 1, pp 2–15 | Cite as

Hurricane Katrina sediment slowed elevation loss in subsiding brackish marshes of the Mississippi River delta

Article

Abstract

Although hurricanes can damage or destroy coastal wetlands, they may play a beneficial role in reinvigorating marshes by delivering sediments that raise soil elevations and stimulate organic matter production. Hurricane Katrina altered elevation dynamics of two subsiding brackish marshes in the Mississippi River deltaic plain by adding 3 to 8 cm of sediment to the soil surface in August 2005. Soil elevations at both sites subsequently declined due to continued subsidence, but net elevation gain was still positive at both Pearl River (+1.7 cm) and Big Branch (+0.7 cm) marshes two years after the hurricane. At Big Branch where storm sediments had higher organic matter and water contents, post-storm elevation loss was more rapid due to initial compaction of the storm layer in combination with root-zone collapse. In contrast, elevation loss was slower at Pearl River where the storm deposit (high sand content) did not compact and the root zone did not collapse. Vegetation at both sites fully recovered within one year, and accumulation of root matter at Big Branch increased 10-fold from 2005 to 2006, suggesting that the hurricane stimulated belowground productivity. Results of this study imply that hurricane sediment may benefit subsiding marshes by slowing elevation loss. However, long-term effects of hurricane sediment on elevation dynamics will depend not only on the amount of sediment deposited, but on sediment texture and resistance to compaction as well as on changes in organic matter accumulation in the years following the hurricane.

Key Words

accretion coastal elevation change organic matter Schoenoplectus sea-level rise Spartina storm subsidence wetland loss 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Barras, J. A. 2006. Land area change in coastal Louisiana after the 2005 hurricanes—a series of three maps. U.S. Geological Survey Open File Report 06-1274.Google Scholar
  2. Barras, J. A. 2007. Satellite images and aerial photographs of the effects of Hurricanes Katrina and Rita on coastal Louisiana. U.S. Geological Survey Data Series 281 (http://pubs.usgs.gov/ds/2007/281).Google Scholar
  3. Barras, J. A., J. C. Bernier, and R. A. Morton. 2008. Land area change in coastal Louisiana—a multidecadal perspective (from 1956 to 2006): U.S. Geological Survey Scientific Investigations Map 3019, scale 1:250,000. p. 14 p. pamphlet.Google Scholar
  4. Baumann, R. H., J. W. Day, and C. A. Miller. 1984. Mississippi deltaic wetland survival: sedimentation versus coastal submergence. Science 224: 1093–95.CrossRefPubMedGoogle Scholar
  5. Burt, R., T. G. Reinsch, and W. P. Miller. 1993. A micro-pipette method for water dispersible clay. Communications in Soil Science and Plant Analysis 24: 2531–44.CrossRefGoogle Scholar
  6. Cahoon, D. R. 2006. A review of major storm impacts on coastal wetland elevations. Estuaries and Coasts 29: 889–98.Google Scholar
  7. Cahoon, D. R., P. Hensel, J. Rybczyk, K. L. McKee, C. E. Proffitt, and B. C. Perez. 2003. Mass tree mortality leads to mangrove peat collapse at Bay Islands, Honduras after Hurricane Mitch. Journal of Ecology 91: 1093–1105.CrossRefGoogle Scholar
  8. Cahoon, D. R., P. F. Hensel, T. Spencer, D. J. Reed, K. L. McKee, and N. Saintilan. 2006. Coastal wetland vulnerability to relative sea-level rise: wetland elevation trends and process controls. p. 271–92. In J. T. A. Verhoeven, B. Beltman, R. Bobbink, and D. F. Whigham (eds.) Wetlands and Natural Resource Management. Springer-Verlag, Berlin Heidelberg, DDR.CrossRefGoogle Scholar
  9. Cahoon, D. R. and J. C. Lynch. 1997. Vertical accretion and shallow subsidence in a mangrove forest of southwestern Florida, U.S.A. Mangroves and Salt Marshes 1: 173–86.CrossRefGoogle Scholar
  10. Cahoon, D. R., J. C. Lynch, and R. M. Knaus. 1996. Improved cryogenic coring device for sampling wetland soils. Journal of Sedimentary Research 66: 1025–27.Google Scholar
  11. Cahoon, D. R., J. C. Lynch, B. C. Perez, B. Segura, R. D. Holland, C. Stelly, G. Stephenson, and P. Hensel. 2002. Highprecision measurements of wetland sediment elevation: II. the rod surface elevation table. Journal of Sedimentary Research 72: 734–39.CrossRefGoogle Scholar
  12. Cahoon, D. R., D. J. Reed, J. W. J. Day, G. D. Steyer, R. M. Boumans, J. C. Lynch, D. McNally, and N. Latif. 1995. The influence of Hurricane Andrew on sediment distribution in Louisiana coastal marshes. Journal of Coastal Research SI 21: 280–94.Google Scholar
  13. Carter, M. R. and B. C. Ball. 1993. Soil porosity. p. 581–88. In M. R. Carter (ed.) Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton.Google Scholar
  14. Coleman, J. M., H. H. Roberts, and G. W. Stone. 1998. Mississippi River delta: an overview. Journal of Coastal Research 14: 698–716.Google Scholar
  15. Day, J. W., D. F. Boesch, E. J. Clairain, G. P. Kemp, S. B. Laska, W. J. Mitsch, K. Orth, H. Mashriqui, D. J. Reed, L. A. Shabman, C. A. Simenstad, B. J. Streever, R. R. Twilley, C. C. Watson, J. T. Wells, and D. F. Whigham. 2007. Restoration of the Mississippi delta: lessons from Hurricanes Katrina and Rita. Science 315: 1679–84.CrossRefPubMedGoogle Scholar
  16. DeLaune, R. D., R. H. Baumann, and J. G. Gosselink. 1983. Relationships among vertical accretion, coastal submergence, and erosion in a Louisiana gulf coast marsh. Journal of Sedimentary Petrology 53: 147–57.Google Scholar
  17. Dokka, R. K. 2006. Modern-day tectonic subsidence in coastal Louisiana. Geology 34: 281–84.CrossRefGoogle Scholar
  18. Emanuel, K. 2005. Increasing destructiveness of tropical cyclones over the past 30 years. Nature 436: 686–88.CrossRefPubMedGoogle Scholar
  19. Flynn, K. M., K. L. McKee, and I. A. Mendelssohn. 1995. Recovery of freshwater marsh vegetation after a saltwater intrusion event. Oecologia 103: 63–72.CrossRefGoogle Scholar
  20. Gambrell, R. P. and W. H. PatrickJr. 1978. Chemical and microbiological properties of anaerobic soils and sediments. p. 375–423. In D. D. Hook and R. M. M. Crawford (eds.) Plant Life in Anaerobic Environments. Ann Arbor Scientific Publishing, Inc., Ann Arbor, MI, USA.Google Scholar
  21. Guntenspergen, G. R., D. R. Cahoon, J. Grace, G. D. Steyer, S. Fournet, M. A. Townson, and A. L. Foote. 1995. Disturbance and recovery of the Louisiana coastal marsh landscape from the impacts of Hurricane Andrew. Journal of Coastal Research Special Issue 21: 324–39.Google Scholar
  22. Hackney, C. T. and T. D. Bishop. 1981. A note on the relocation of marsh debris during a storm surge. Estuarine Coastal and Shelf Science 12: 621–24.CrossRefGoogle Scholar
  23. Koch, M., I. A. Mendelssohn, and K. L. McKee. 1990. Mechanism for the hydrogen sulfide-induced growth limitation in wetland macrophytes. Limnology and Oceanography 35: 399–408.CrossRefGoogle Scholar
  24. McKee, K. L. and A. Baldwin. 2000. Disturbance regimes in North American wetlands. p. 331–63. In L. R. Walker (ed.) Ecosystems of Disturbed Ground. Elsevier, Amsterdam.Google Scholar
  25. McKee, K. L., D. R. Cahoon, and I. C. Feller. 2007. Caribbean mangroves adjust to rising sea level through biotic controls on change in soil elevation. Global Ecology and Biogeography 16: 545–56.CrossRefGoogle Scholar
  26. McKee, K. L. and I. A. Mendelssohn. 1989. Response of a freshwater marsh plant community to increased salinity and water level. Aquatic Botany 34: 301–16.CrossRefGoogle Scholar
  27. Mendelssohn, I. A., K. L. McKee, and J. W. H. Patrick. 1981. Oxygen deficiency in Spartina alterniflora roots: metabolic adaptation to anoxia. Science 214: 439–41.CrossRefPubMedGoogle Scholar
  28. Michener, W. K., E. R. Blood, K. L. Bildstein, M. M. Brinson, and L. R. Gardner. 1997. Climate change, hurricanes and tropical storms, and rising sea level in coastal wetlands. Ecological Applications 7: 770–801.CrossRefGoogle Scholar
  29. Morton, R. A. and N. A. Purcell. 2001. Wetland subsidence, fault reactivation, and hydrocarbon production in the U.S. Gulf Coast regionGoogle Scholar
  30. Nyman, J. A., C. R. Crozier, and R. D. DeLaune. 1995. Roles and patterns of hurricane sedimentation in an estuarine marsh landscape. Estuarine Coastal and Shelf Science 40: 665–79.CrossRefGoogle Scholar
  31. Nyman, J. A., R. D. DeLaune, H. H. Roberts, and W. H. P. Jr. 1993. Relationship between vegetation and soil formation in a rapidly submerging coastal marsh. Marine Ecology Progress Series 96: 269–79.CrossRefGoogle Scholar
  32. Parent, L. E. and J. Caron. 1993. Physical properties of organic soils. p. 441–58. In M. R. Carter (ed.) Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton.Google Scholar
  33. Penland, S. and K. E. Ramsey. 1990. Relative sea-level rise in Louisiana and the Gulf of Mexico: 1908–1988. Journal of Coastal Ecology 6: 323–42.Google Scholar
  34. Reed, D. J. and D. R. Cahoon. 1992. The relationship between marsh surface topography, hydroperiod, and growth of Spartina alterniflora in a deteriorating Louisiana salt marsh. Journal of Coastal Research 8: 77–87.Google Scholar
  35. Rejmánek, M., C. E. Sasser, and G. W. Peterson. 1988. Hurricane-induced sediment deposition in a Gulf Coast marsh. Estuarine Coastal and Shelf Science 27: 217–22.CrossRefGoogle Scholar
  36. Scavia, D., J. C. Field, D. F. Boesch, R. W. Buddemeier, V. Burkett, D. R. Cayan, M. Fogarty, M. A. Harwell, R. W. Howarth, C. Mason, D. J. Reed, T. C. Royer, A. H. Sallenger, and J. G. Titus. 2002. Climate change impacts on U.S. coastal and marine ecosystems. Estuaries 25: 149–64.CrossRefGoogle Scholar
  37. Shein, K. A. 2006. State of the climate in 2005. Bulletin of the American Meteorological Society 87: S6-S102.CrossRefGoogle Scholar
  38. Stevenson, J. C., L. G. Ward, and M. S. Kearney. 1986. Vertical accretion in marshes with varying rates of sea level rise. p. 241–59. In D. A. Wolfe (ed.) Estuarine Variability. Academic Press, Orlando.Google Scholar
  39. Stone, G. W., J. M. Grymes, J. R. Dingler, and D. A. Pepper. 1997. Overview and significance of hurricanes on the Louisiana coast, USA. Journal of Coastal Research 13: 656–69.Google Scholar
  40. Tolley, P. M. and R. R. Christian. 1999. Effects of increased inundation and wrack deposition on a high salt marsh plant community. Estuaries 22: 944–54.CrossRefGoogle Scholar
  41. Törnqvist, T. E., S. J. Bick, K. van der Borg, and A. F. M. de Jong. 2006. How stable is the Mississippi Delta? Geology 34: 697–700.CrossRefGoogle Scholar
  42. Turner, R. E., J. J. Baustian, E. M. Swenson, and J. S. Spicer. 2006. Wetland sedimentation from Hurricanes Katrina and Rita. Science 314: 449–52.CrossRefPubMedGoogle Scholar
  43. Warkentin, B. P. 1993. Soil shrinkage. p. 513–18. In M. R. Carter (ed.) Soil Sampling and Methods of Analysis. Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  44. Webster, P. J., G. J. Holland, J. A. Curry, and H. R. Chang. 2005. Changes in tropical cyclone number, duration, and intensity in a warming environment. Science 309: 1844–46.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Wetland Scientists 2009

Authors and Affiliations

  1. 1.USGSNational Wetlands Research CenterLafayetteUSA
  2. 2.Departments of New College and Biological SciencesUniversity of AlabamaTuscaloosaUSA

Personalised recommendations