Wetlands

, Volume 29, Issue 4, pp 1202–1213

Dissolved oxygen requirements for hatching success of two ambystomatid salamanders in restored ephemeral ponds

Article

Abstract

To assess feasibility of reintroduction of extirpated spotted salamanders (Ambystoma maculatum) in restored flatwoods wetlands, hatching rates were monitored using pond enclosures.Ambystoma maculatum hatching success was compared to that of conspecifics in source ponds and to blue-spotted salamanders (Ambystoma laterale) that had persisted in restored ponds despite habitat degradation. Restored ephemeral ponds with hypoxic conditions had consistent hatching failure forA. maculatum. To isolate effects of dissolved oxygen (DO), laboratory gradients were used to identify levels of DO necessary forA. maculatum andA. laterale hatching success. DO treatments included 0, 2.0, 4.0, 5.0, 6.0, 7.0, and 8.0 mg/l forA. maculatum and 2.0, 4.0, and 6.0 mg/l forA. laterale. Ambystoma laterale hatched across all treatments.Ambystoma maculatum hatching was successful in treatments >4.0 mg/l. Prescribed burns of dried ponds and selective girdling reduced leaf litter and increasedin situ photosynthesis resulting in greater DO.Ambystoma laterale may have persisted in degraded ponds because of differences fromA. maculatum in egg structure, and thus oxygen delivery. Land use changes contributing to hypoxia, including changes in forest composition and fire regime, may help explain the loss ofA. maculatum from regional assemblages.

Key Words

amphibians canopy closure egg mass flatwoods hypoxia vernal pool 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Atlas, M. 1938. The rate of oxygen consumption of frogs during embryonic development and growth. Physiological Zoology 11:278–91.Google Scholar
  2. Blaustein, A. R., P. D. Hoffman, D. G. Hokit, J. M. Kiesecker, S. C. Walls, and J. B. Hays. 1994. UV repair and resistance to solar UV-B in amphibian eggs: a link to population declines? Proceedings of the National Academy of Sciences 91:1791–95.CrossRefGoogle Scholar
  3. Branch, L. C. and R. Altig. 1983. Survival and behavior of four species ofAmbystoma larvae under hypoxic conditions. Comparative Biochemistry and Physiology 74a:395–97.Google Scholar
  4. Brooks, R. T. and M. Hayashi. 2002. Depth-area-volume and hydroperiod relationships of ephemeral (vernal) forest pools in southern New England. Wetlands 22:247–55.CrossRefGoogle Scholar
  5. Carlton, R. G. and R. G. Wetzel. 1987. Distributions and fates of oxygen in periphyton communities. Canadian Journal of Botany 65:1031–37.CrossRefGoogle Scholar
  6. Carroll, C., J. Ellis, G. Spyreas, and B. Molano-Flores. 2009. A finger on the pulse of Illinois forests- early results from the Critical Trends Assessment Program.In C. A. Taylor, J. B. Taft, and C. Warwick (eds.) Canaries in the Catbird Seat. Illinois Natural History Survey Special Publication #30.Google Scholar
  7. Cech Jr, J. J., S. J. Mitchell, D. T. Castleberry, and M. McEnroe. 1990. Distribution of California stream fishes: influence of environmental temperature and hypoxia. Environmental Biology of Fishes 29:95–105.CrossRefGoogle Scholar
  8. Colburn, E. A. 2004. Vernal Pools: Natural History and Conservation. The MacDonald and Woodward Publishing Company, Blacksburg, VA, USA.Google Scholar
  9. Dahl, T. E. and G. J. Allord. 1990. History of wetlands in the conterminous United States. National Water Summary—Wetland Resources: Technical Aspects. United States Geological Survey, Water Supply Paper 2425.Google Scholar
  10. DeMaynadier, P. G. and M. L. Hunter, Jr. 1999. Forest canopy closure and juvenile emigration by pool-breeding amphibians in Maine. Journal of Wildlife Management 63:441–50.CrossRefGoogle Scholar
  11. Egan, R. S. and P. W. C. Paton. 2004. Within-pond parameters affecting oviposition by wood frogs and spotted salamanders. Wetlands 24:1–13.CrossRefGoogle Scholar
  12. Gibbons, J. W. 2003. Terrestrial habitat: a vital component for herpetofauna of isolated wetlands. Wetlands 23:630–35.CrossRefGoogle Scholar
  13. Gibbs, J. P. 1998. Distribution of woodland amphibians along a forest fragmentation gradient. Landscape Ecology 13:263–68.CrossRefGoogle Scholar
  14. Gilbert, P. W. 1942. Observations on the eggs ofAmbystoma maculatum with especial reference to the green algae found within the egg envelopes. Ecology 23:215–27.CrossRefGoogle Scholar
  15. Gilbert, P. W. 1944. The alga-egg relationship inAmbystoma maculatum, a case of symbiosis. Ecology 25:366–69.CrossRefGoogle Scholar
  16. Gutsell, J. S. 1929. Influence of certain water conditions, especially dissolved gasses on trout. Ecology 10:77–96.CrossRefGoogle Scholar
  17. Hill, W. R. and S. M. Dimick. 2002. Effects of riparian leaf dynamics on periphyton photosynthesis and light utilisation efficiency. Freshwater Biology 47:1245–56.CrossRefGoogle Scholar
  18. Hocking, D. and R. D. Semlitsch. 2007. Effects of timber harvest on breeding site selection by gray treefrogs (Hyla versicolor). Biological Conservation 138:506–13.CrossRefGoogle Scholar
  19. Hutchinson, V. H. and C. S. Hammen. 1958. Oxygen utilization in the symbiosis of embryos of the salamander,Ambystoma maculatum and the alga,Oophilia amblystomatis. The Biological Bulletin 115:438–89.Google Scholar
  20. Kiesecker, J. M. and A. R. Blaustein. 1995. Synergism between UV-B radiation and a pathogen magnifies amphibian embryo mortality in nature. Proceedings of the National Academy of Sciences 92:11049–52.CrossRefGoogle Scholar
  21. Kiesecker, J. M., A. R. Blaustein, and L. K. Belden. 2001. Complex causes of amphibian population declines. Nature 410:686–84.CrossRefGoogle Scholar
  22. Klick, K. 2002. MacArthur Woods Forest Preserves’ wooded wetland habitat restoration project. Written programmatic report. Lake County Forest Preserve District, Planning Office, Lake County, IL, USA. Project number 01-21-00-04.Google Scholar
  23. King, J. L., M. A. Simovich, and R. C. Brusca. 1996. Species richness, endemism and ecology of crustacean assemblages in northern California vernal pools. Hydrobiologia 328:85–116.CrossRefGoogle Scholar
  24. Knight, K. S., J. S. Kurylo, A. G. Endress, J. R. Stewart, and P. B. Reich. 2007. Ecology and ecosystem impacts of common buckthorn (Rhamnus cathartica): a review. Biological Invasions 9:925–37.CrossRefGoogle Scholar
  25. Kucera, C. L. 1959. Weathering characteristics of deciduous leaf litter. Ecology 40:485–487.CrossRefGoogle Scholar
  26. Kurylo, J. S., K. S. Knight, J. R. Stewart, and A. G. Endress. 2007.Rhamnus cathartica: Native and naturalized distribution and habitat preferences. Journal of the Torrey Botanical Society 134:420–30.CrossRefGoogle Scholar
  27. Matthews, K. R. and N. H. Berg. 2005. Rainbow trout responses to water temperature and dissolved oxygen stress in two southern California stream pools. Journal of Fish Biology 50:50–67.CrossRefGoogle Scholar
  28. McCormick, P. V. and J. A. Laing. 2003. Effects of increased phosphorus loading on dissolved oxygen in a subtropical wetland, the Florida Everglades. Wetlands Ecology and Management 11:199–216.CrossRefGoogle Scholar
  29. Mierzwa, K. S. 2001. MacArthur Woods Habitat Restoration Project: Baseline amphibian and reptile monitoring. Report to the Lake County Forest Preserve District. Planning Office, Lake County Forest Preserve District. Lake County, IL, USA.Google Scholar
  30. Mills, N. E. and M. C. Barnhart. 1998. Effects of hypoxia on embryonic development in twoAmbystoma and twoRana species. Physiological and Biochemical Zoology 72:179–188.CrossRefGoogle Scholar
  31. Nie, M., J. D. Crim, and G. R. Ultsch. 1999. Dissolved oxygen, temperature, and habitat selection by bullfrog tadpoles. Copeia 1999:155–62.CrossRefGoogle Scholar
  32. Ostrofsky, M. L. 1997. Relationship between chemical characteristics of autumn-shed leaves and aquatic processing rates. Journal of the North American Benthological Society 16:750–59.CrossRefGoogle Scholar
  33. Parish, G., L. Graef, L. Anhalt, R. Schloemer, and J. Sellar. 2006. Thirsty plants, dry soils: changes in soil moisture content after the removal of invasive species. Chicago Wilderness Journal 4:11–17.Google Scholar
  34. Petranka, J. W., J. J. Just, and E. C. Crawford. 1982. Hatching of amphibian embryos: the physiological trigger. Science 217:257–58.CrossRefPubMedGoogle Scholar
  35. Pinder, A. W. and S. C. Friet. 1994. Oxygen transport in egg masses of the amphibiansRana sylvatica andAmbystoma maculatum: convection, diffusion, and oxygen production by algae. Journal of Experimental Biology 197:17–30.PubMedGoogle Scholar
  36. Porej, D., M. Micacchion, and T. E. Hetherington. 2004. Core terrestrial habitat for conservation of local populations of salamanders and wood frogs in agricultural landscapes. Biological Conservation 120:399–409.CrossRefGoogle Scholar
  37. Seltzner, S. and T. L. Eddy. 2003. Allelopathy inRhamnus cathartica, European buckthorn. The Michigan Botanist 42:51–61.Google Scholar
  38. Semlitsch, R. D. 1998. Biological delineation of terrestrial buffer zones for pond-breeding salamanders. Conservation Biology 12:1113–19.CrossRefGoogle Scholar
  39. Seymour, R. S., J. D. Roberts, N. J. Mitchell, and A. J. Blaylock. 2000. Influence of environmental oxygen on development and hatching of aquatic eggs of the Australian frog,Crinia georgiana. Physiological and Biochemical Zoology 73:501–07.CrossRefPubMedGoogle Scholar
  40. Skelly, D. K., E. E. Werner, and S. Cortwright. 1999. Long-term distributional dynamics of a Michigan amphibian assemblage. Ecology 80:2326–37.CrossRefGoogle Scholar
  41. Skelly, D. K. and J. Golon. 2003. Assimilation of natural benthic substrates by two species of tadpoles. Herpetologica 59:37–42.CrossRefGoogle Scholar
  42. Swan, C. M. and M. A. Palmer. 2005. Leaf litter diversity leads to non-additivity in stream detritivore colonization dynamics. Oceanological and Hydrobiological Studies 34:19–38.Google Scholar
  43. ter Steege, H. 1994. Hemiphot: a programme to analyze vegetation indices, light and light quality from hemispherical photographs. Tropenbos Documents 3. Stichting Tropenbos, Wageningen, Netherlands.Google Scholar
  44. Ward, D. and O. J. Sexton. 1981. Anti-predator role of salamander egg membranes. Copeia 1981:724–26.CrossRefGoogle Scholar
  45. Warkentin, K. M. 2002. Hatching time, oxygen availability, and external gill regression in the tree frog,Agalychnis callidryas. Physiological and Biochemical Zoology 75:155–64.CrossRefPubMedGoogle Scholar
  46. Werner, E. E. and K. S. Glennemeier. 1999. Influence of forest canopy cover on the breeding pond distributions of several amphibian species. Copeia 1999:1–12.CrossRefGoogle Scholar
  47. Williams, B. K., T. A. G. Rittenhouse, and R. D. Semlitsch. 2008. Leaf litter input mediates tadpole performance across forest canopy treatments. Oecologia 155:377–84.CrossRefPubMedGoogle Scholar

Copyright information

© Society of Wetland Scientists 2009

Authors and Affiliations

  1. 1.Department of Biological SciencesNorthern Illinois UniversityDe KalbUSA

Personalised recommendations