, Volume 29, Issue 1, pp 187–195 | Cite as

The impact of hydrology and nutrients on species composition and richness: Evidence from a microcosm experiment



Protection of biodiversity and restoration of species-rich plant communities rely on an adequate understanding of how diversity is regulated. We studied species diversity patterns and community assembly in a simulated three-year wetland succession using factorial combinations of two nutrient levels, two water levels, and three water level fluctuation regimes. A standard seed mixture of 23 wetland species representing a wide range of plant functional types was sown in each microcosm. We found strong and consistent effects of water depth and nutrient level on species composition, species richness, and biomass, but no clear effect of water level fluctuations. The relationship between biomass and species richness was positive in the infertile range (16 to 204 g m−2) but negative in the fertile range (372 to 1156 g m−2). This pattern is consistent with the “humped-back model”, with maximum species richness at an above ground biomass between 200 and 250 g m−2. Increasing species richness in the low fertility range could partly be explained by limited seedling establishment in the harsh environment of nutrient poor and water logged soils. We interpret the decreasing species richness at high fertility as an effect of increasing competitive asymmetry.

Key Words

biodiversity community assembly nutrient availability productivity vegetation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Al-mufti, M. M., C. L. Sydes, S. B. Furness, J. P. Grime, and S. R. Band. 1977. A quantitative analysis of shoot phenology and dominance in herbaceous vegetation. Journal of Ecology 65: 759–91.CrossRefGoogle Scholar
  2. Anon. 1999. S-Plus 2000 Professional release 2. 1988–1999 Mathsoft Inc., Seattle, WA, USA.Google Scholar
  3. Burke, M. J. W. and J. P. Grime. 1996. An experimental study of plant community invasibility. Ecology 77: 776–90.CrossRefGoogle Scholar
  4. Casanova, M. T. and M. A. Brock. 2000. How do depth, duration and frequency of flooding influence the establishment of wetland plant communities? Plant Ecology 147: 237–50.CrossRefGoogle Scholar
  5. Chambers, J. M. and T. J. Hastie. 1993. Statistical Models in S. Chapman and Hall, New York, NY, USA.Google Scholar
  6. Chiarucci, A., C. Alongi, and J. B. Wilson. 2004. Competitive exclusion and the No-Interaction model operate simultaneously in microcosm plant communities. Journal of Vegetation Science 15: 789–96.Google Scholar
  7. Connell, J. H. 1978. Diversity in tropical rain forests and coral reefs — High diversity of trees and corals is maintained only in a non-equilibrium state. Science 199: 1302–10.CrossRefPubMedGoogle Scholar
  8. Cornwell, W. K. and P. J. Grubb. 2003. Regional and local patterns in plant species richness with respect to resource availability. Oikos 100: 417–28.CrossRefGoogle Scholar
  9. Day, R. T., P. A. Keddy, J. McNeil, and T. Carleton. 1988. Fertility and disturbance gradients: a summary model for riverine marsh vegetation. Ecology 69: 1044–54.CrossRefGoogle Scholar
  10. Ditommaso, A. and L. W. Aarssen. 1991. Effect of nutrient level on competition intensity in the field for three coexisting grass species. Journal of Vegetation Science 2: 513–22.CrossRefGoogle Scholar
  11. Ejrnæs, R., H. H. Bruun, and B. J. Graae. 2006. Community assembly in experimental grasslands: suitable environment or timely arrival? Ecology 87: 1225–33.CrossRefPubMedGoogle Scholar
  12. Facelli, J. M. and S. T. A. Pickett. 1991. Plant litter — Light interception and effects on an old-field plant community. Ecology 72: 1024–31.CrossRefGoogle Scholar
  13. Fraser, L. H. and P. A. Keddy. 1997. The role of experimental microcosms in ecological research. Trends in Ecology and Evolution 12: 478–81.CrossRefGoogle Scholar
  14. Gerard, M., M. E. Kahloun, W. Mertens, B. Verhagen, and P. Meire. 2008. Impact of flooding on potential and realised grassland species richness. Plant Ecology 194: 85–98.CrossRefGoogle Scholar
  15. Gough, L., J. B. Grace, and K. L. Taylor. 1994. The relationship between species richness and community biomass the importance of environmental variables. Oikos 70: 271–79.CrossRefGoogle Scholar
  16. Gough, L., C. W. Osenberg, K. L. Gross, and S. L. Collins. 2000. Fertilization effects on species density and primary productivity in herbaceous plant communities. Oikos 89: 428–39.CrossRefGoogle Scholar
  17. Grace, J. B. 1999. The factors controlling species density in herbaceous plant communities: an assessment. Perspectives in Plant Ecology, Evolution and Systematics 2: 1–28.CrossRefGoogle Scholar
  18. Grace, J. B. 2001. The roles of community biomass and species pools in the regulation of plant diversity. Oikos 92: 193–207.CrossRefGoogle Scholar
  19. Grace, J. B. and B. H. Pugesek. 1997. A structural equation model of plant species richness and its application to a coastal wetland. American Naturalist 149: 436–60.CrossRefGoogle Scholar
  20. Grime, J. P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–47.CrossRefGoogle Scholar
  21. Grime, J. P. 1979. Plant Strategies and Vegetation Processes. Wiley, Chichester, UK.Google Scholar
  22. Gross, K. L., M. R. Willig, L. Gough, R. Inouye, and S. B. Cox. 2000. Patterns of species density and productivity at different spatial scales in herbaceous plant communities. Oikos 89: 417–27.CrossRefGoogle Scholar
  23. Grubb, P. J. 1977. The maintenance of species-richness in plant communities — the importance of the regeneration niche. Biological Reviews 52: 107–45.CrossRefGoogle Scholar
  24. Guo, Q. F. 2003. Temporal species richness-biomass relationships along successional gradients. Journal of Vegetation Science 14: 121–28.CrossRefGoogle Scholar
  25. Hector, A., A. J. Beale, A. Minns, S. J. Otway, and J. H. Lawton. 2000. Consequences of the reduction of plant diversity for litter decomposition: effects through litter quality and microenvironment. Oikos 90: 357–71.CrossRefGoogle Scholar
  26. Hector, A., B. Schmid, C. Beierkuhnlein, M. C. Caldeira, M. Diemer, P. G. Dimitrakopoulos, J. A. Finn, H. Freitas, P. S. Giller, J. Good, R. Harris, P. Hogberg, K. Huss-Danell, J. Joshi, Jumpponen, C. Korner, P. W. Leadley, M. Loreau, A. Minns, C. P. H. Mulder, G. O’Donovan, S. J. Otway, J. S. Pereira, A. Prinz, D. J. Read, M. Scherer-Lorenzen, E. D. Schulze, A. S. D. Siamantziouras, E. M. Spehn, A. C. Terry, A. Y. Troumbis, F. I. Woodward, S. Yachi, and J. H. Lawton. 1999. Plant diversity and productivity experiments in European grasslands. Science 286: 1123–27.CrossRefPubMedGoogle Scholar
  27. Hooper, D. U. and P. M. Vitousek. 1998. Effects of plant composition and diversity on nutrient cycling. Ecological Monographs 68: 121–49.Google Scholar
  28. Huston, M. A., L. W. Aarssen, M. P. Austin, B. S. Cade, J. D. Fridley, E. Garnier, J. P. Grime, J. Hodgson, W. K. Lauenroth, K. Thompson, J. H. Vandermeer, and D. A. Wardle. 2000. No consistent effect of plant diversity on productivity. Science 289: 1255–57.CrossRefPubMedGoogle Scholar
  29. Huston, M. 1979. General hypothesis of species-diversity. American Naturalist 113: 81–101.CrossRefGoogle Scholar
  30. Keddy, P. A. 1985. Wave disturbance on lakeshores and the within-lake distribution of Ontarios (Canada) Atlantic coastal plain flora. Canadian Journal of Botany 63: 656–60.CrossRefGoogle Scholar
  31. Kruskal, J. B. 1964. Nonmetric multidimensional scaling: a numerical method. Psychometrika 29: 115–29.CrossRefGoogle Scholar
  32. Lenssen, J., F. Menting, W. van der Putten, and K. Blom. 1999. Control of plant richness and zonation of functional groups along a freshwater flooding gradient. Oikos 86: 523–34.CrossRefGoogle Scholar
  33. Loreau, M., S. Naeem, P. Inchausti, J. Bengtsson, J. P. Grime, A. Hector, D. U. Hooper, M. A. Huston, D. Raffaelli, B. Schmid, D. Tilman, and D. A. Wardle. 2001. Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294: 804–08.CrossRefPubMedGoogle Scholar
  34. Loreau, M., S. Naeem, and P. Inchausti. 2002. Biodiversity and Ecosystem Functioning — Synthesis and Perspectives. Oxford University Press, UK.Google Scholar
  35. McCune, B. and M. J. Mefford. 1999. PC-ORD for Windows (4.01). Multivariate Analysis of Ecological Data. MjM Software, Gleneden Beach, Oregon, USA.Google Scholar
  36. Merritt, D. M. and E. H. Wohl. 2002. Processes governing hydrochory along rivers: hydraulics, hydology, and dispersal phenology. Ecological Applications 12: 1071–87.CrossRefGoogle Scholar
  37. Mittelbach, G. G., C. F. Steiner, S. M. Scheiner, K. L. Gross, H. L. Reynolds, R. B. Waide, M. R. Willig, S. I. Dodson, and L. Gough. 2001. What is the observed relationship between species richness and productivity? Ecology 82: 2381–96.CrossRefGoogle Scholar
  38. Nygaard, B. and R. Ejrnæs. 2004. A new approach to functional interpretation of vegetation data. Journal of Vegetation Science 15: 49–56.CrossRefGoogle Scholar
  39. Økland, R. H. 1990. Vegetation Ecology: Theory, Methods and Applications with Reference to Fennoscandia. Botanical Garden and Museum, University of Oslo, Norway.Google Scholar
  40. Oksanen, J. 1996. Is the humped relationship between species richness and biomass an artefact due to plot size? Journal of Ecology 84: 293–95.CrossRefGoogle Scholar
  41. Pärtel, M. and M. Zobel. 2007. Dispersal limitation may result in the unimodal productivity-diversity relationship:a new explanation for a general pattern. Journal of Ecology 95: 90–94.CrossRefGoogle Scholar
  42. Pollock, M. M., R. J. Naiman, and T. A. Hanley. 1998. Plant species richness in riparian wetlands — A test of biodiversity theory. Ecology 79: 94–105.Google Scholar
  43. Scheiner, S. M., S. B. Cox, M. Willig, G. G. Mittelbach, C. Osenberg, and M. Kaspari. 2000. Species richness, species-area curves and Simpson’s paradox. Evolutionary Ecology Research 2: 791–802.Google Scholar
  44. Seabloom, E. W., A. G. van der Valk, and K. A. Moloney. 1998. The role of water depth and soil temperature in determining initial composition of prairie wetland coenoclines. Plant Ecology 138: 203–16.CrossRefGoogle Scholar
  45. Shipley, B., P. A. Keddy, C. Gaudet, and D.-R. J. Moore. 1991. A model of species density in shoreline vegetation. Ecology 72: 1658–67.CrossRefGoogle Scholar
  46. Silvertown, J., M. E. Dodd, D. J. G. Gowing, and J. O. Mountford. 1999. Hydrologically defined niches reveal a basis for species richness in plant communities. Nature 400: 61–63.CrossRefGoogle Scholar
  47. Stockey, A. and R. Hunt. 1994. Predicting secondary succession in wetland mesocosms on the basis of autoecological information on seeds and seedlings. Journal of Applied Ecology 31: 543–59.CrossRefGoogle Scholar
  48. Tilman, D. 1982. Resource Competition and Community Structure. Princeton University Press, Princeton, USA.Google Scholar
  49. Tutin, T. G., et al. 1964–1993. Flora Europaea. Vol. 1–5 & Vol. 1 (2nd edition). Cambridge University Press, Cambridge, UK.Google Scholar
  50. van der Valk, A. 1981. Succession in wetlands: A Gleasonian approach. Ecology 62: 688–96.CrossRefGoogle Scholar
  51. Venterink, H. O., M. J. Wassen, J. D. M. Belgers, and J. T. A. Verhoeven. 2001. Control of environmental variables on species density in fens and meadows: importance of direct effects and effects through community biomass. Journal of Ecology 89: 1033–40.CrossRefGoogle Scholar
  52. Venterink, H. O., N. M. Pieterse, J. D. M. Belgers, M. J. Wassen, and O. D. de Ruiter. 2002. N, P and K budgets along nutrient availability and productivity gradients in wetlands. Ecological Applications 12: 1010–26.CrossRefGoogle Scholar
  53. Vivian-Smith, G. 1997. Microtopographic heterogeneity and floristic diversity in experimental wetland communities. Journal of Ecology 85: 71–82.CrossRefGoogle Scholar
  54. Waide, R. B., M. R. Willig, C. F. Steiner, G. Mittelbach, L. Gough, S. I. Dodson, G. P. Juday, and R. Parmenter. 1999. The relationship between productivity and species richness. Annual Review of Ecology and Systematics 30: 257–300.CrossRefGoogle Scholar
  55. Weiher, E. and P. A. Keddy. 1995. The assembly of experimental wetland plant communities. Oikos 73: 323–35.CrossRefGoogle Scholar
  56. Weiher, E. 2003. Species richness along multiple gradients: testing a general multivariate model in oak savannas. Oikos 101: 311–16.CrossRefGoogle Scholar
  57. Westoby, M., E. Jurado, and M. Leishman. 1992. Comparative evolutionary ecology of seed size. Trends in Ecology and Evolution 7: 368–72.CrossRefGoogle Scholar
  58. Wetzel, P. R. and A. G. van der Valk. 1998. Effects of nutrient and soil moisture on competition between Carex stricta, Phalaris arundinacea, and Typha latifolia. Plant Ecology 138: 179–90.CrossRefGoogle Scholar
  59. Wilson, S. D. and P. A. Keddy. 1986a. Species competitive ability and position along a natural stress disturbance gradient. Ecology 67: 1236–42.CrossRefGoogle Scholar
  60. Wilson, S. D. and P. A. Keddy. 1986b. Measuring diffuse competition along an environmental gradient — Results from a shoreline plant community. American Naturalist 127: 862–69.CrossRefGoogle Scholar
  61. Wilson, S. D. and P. A. Keddy. 1988. Species richness, survivorship and biomass accumulation along an environmental gradient. Oikos 53: 375–80.CrossRefGoogle Scholar
  62. Wisheu, I. C. and P. A. Keddy. 1989. Species richness — standing crop relationships along four lakeshore gradients: constraints on the general model. Canadian Journal of Botany 67: 1609–17.CrossRefGoogle Scholar
  63. Zobel, M. 1997. The relative role of species pools in determining plant species richness: An alternative explanation of species coexistence? Trends in Ecology and Evolution 12: 266–69.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2009

Authors and Affiliations

  1. 1.Department of Wildlife Ecology and Biodiversity, National Environmental Research InstituteUniversity of AarhusRoendeDenmark

Personalised recommendations