Advertisement

Wetlands

, 28:164 | Cite as

Testate amoebae ecology and a local transfer function from a peatland in western Poland

  • Łukasz Lamentowicz
  • Mariusz Lamentowicz
  • Maciej Gąbka
Article

Abstract

In Chlebowo mire (Wielkopolska region), we investigated testate amoebae in relation to 10 environmental parameters in the semi-natural floating vegetation of flooded peat workings. The measured parameters included: depth to water table (DWT), ground-water pH, color, conductivity, PO4, NO3, NH4, SO4, Ca, and Mg. Detrended correspondence analysis and canonical correspondence analysis (CCA) were used to analyze relations between the composition of testate amoebae communities and those variables. In canonical correspondence analysis, DWT, pH, and Mg remained after forwardselection as the main factors characterizing the changes in testate amoebae communities along the moisture and nutrient gradients. Characteristic species of testate amoebae for the various stages of floating-mat development in the flooded peat workings were distinguished. Communities of testate amoebae along with present-day vegetation reflect the process of progressive acidification, driven mainly by Sphagnum fallax. We consider this as secondary succession, since preliminary investigations of peat stratigraphy revealed sedge peat below no more than 5–40 cm of Sphagnum peat in undisturbed parts of the mire. This study increases our understanding of relationships between testate amoebae and their habitat, which is valuable for palaeoenvironmental studies. A local transfer function was developed with the use of six models: partial least squares, maximum likelihood, modern analogue technique, weighted averaging, tolerance down-weighted averaging, and weighted averaging-partial least squares. The weighted averaging model performed the best for depth to water table (root mean square error of prediction RMSEP = 6.99) and pH (RMSEP = 0.8). Results will be used as part of a regional training set to improve palaeoenvironmental reconstructions of Sphagnum peatlands.

Key Words

acidification floating mat poor-rich gradient Sphagnum wet-dry gradient 

Literature Cited

  1. Beyens, L. and R. Meisterfeld. 2001. Protozoa: testate amoebae. p. 121–53. In J. P. Smol, H. J. B. Birks, and W. M. Last (eds.) Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestial, Algal and Siliceous Indicators. Kluwer Academic Publishers, Dordrecht, Netherlands.Google Scholar
  2. Birks, H. J. B. 1995. Quantitative palaeoenvironmental reconstructions. p. 161–254. In D. Maddy and J. S. Brew (eds.) Statistical Modelling of Quaternary Science Data. Quaternary Research Association, Cambridge, UK.Google Scholar
  3. Bobrov, A. A., D. J. Charman, and B. G. Warner. 1999. Ecology of testate amoebae (Protozoa: Rhizopoda) on peatlands in western Russia with special attention to niche separation in closely related taxa. Protist 150: 125–36.CrossRefPubMedGoogle Scholar
  4. Booth, R. K. 2001. Ecology of testate amoebae (Protozoa) in two Lake Superior coastal wetlands: implications for paleoecology and environmental monitoring. Wetlands 21: 564–76.CrossRefGoogle Scholar
  5. Booth, R. K. 2002. Testate amoebae as paleoindicators of surface-moisture changes on Michigan peatlands: modern ecology and hydrological calibration. Journal of Paleolimnology 28: 329–48.CrossRefGoogle Scholar
  6. Booth, R. K., S. T. Jackson, S. L. Forman, J. E. Kutzbach, E. A. Bettis, J. Kreig, and D. K. Wright. 2005. A severe centennialscale drought in midcontinental North America 4200 years ago and apparent global linkages. The Holocene 15: 321–28.CrossRefGoogle Scholar
  7. Booth, R. K., M. Notaro, S. T. Jackson, and J. E. Kutzbach. 2006. Widespread drought episodes in the western Great Lakes region during the past 2000 years: geographic extent and potential mechanisms. Earth and Planetary Science Letters 242: 415–27.CrossRefGoogle Scholar
  8. Booth, R. K. and J. R. Zygmunt. 2005. Biogeography and comparative ecology of testate amoebae inhabiting Sphagnum- dominated peatlands in the Great Lakes and Rocky Mountain regions of North America. Biodiversity Research 11: 577–90.Google Scholar
  9. Braun-Blanquet, J. 1964. Pflanzensoziologie. Grundzüge der Vegetationskunde, third edition. Springer, Berlin, Germany.Google Scholar
  10. Charman, D. J. and A. Blundell. 2007. A new European testate amoebae transfer function for palaeohydrological reconstruction on ombrotrophic peatlands. Journal of Quaternary Science. 22: 209–21.CrossRefGoogle Scholar
  11. Charman, D. J., A. Blundell, R. C. Chiverrell, D. Hendon, and P. G. Langdon. 2006. Compilation of non-annually resolved Holocene proxy climate records: stacked Holocene peatland palaeo-water table reconstructions from northern Britain. Quaternary Science Reviews 25: 336–50.CrossRefGoogle Scholar
  12. Charman, D. J., A. D. Brown, D. Hendon, and E. Karofeld. 2004. Testing the relationship between Holocene peatland palaeoclimate reconstructions and instrumental data at two European sites. Quaternary Science Reviews 23: 137–43.CrossRefGoogle Scholar
  13. Charman, D. J., D. Hendon, and W. A. Woodland. 2000. The Identification of Testate Amoebae (Protozoa: Rhizopoda) in Peats. Technical Guide No. 9. Quaternary Research Association, London, UK.Google Scholar
  14. Charman, D. J. and B. Warner. 1997. The ecology of testate amoebae (Protozoa: Rhizopoda) in oceanic peatlands in Newfoundland, Canada: modelling hydrological relationships for paleoenvironmental reconstruction. Ecoscience 4: 555–62.Google Scholar
  15. Clarke, K. J. 2003. Guide to Identification of Soil Protozoa —Testate Amoebae. Freshwater Biological Association, Ambleside, UK.Google Scholar
  16. Crowley, P. H. 1992. Resampling methods for data analysis in computation-intensive ecology and evolution. Annual Review of Ecology and Systematics 23: 405–47.CrossRefGoogle Scholar
  17. Gearey, B. R. and C. J. Caseldine. 2006. Archaeological applications of testate amoebae analyses: a case study from Derryville, Co. Tipperary, Ireland. Journal of Archaeological Science 33: 49–55.CrossRefGoogle Scholar
  18. Gilbert, D., C. Amblard, G. Bourdier, and A. -J. Francez. 1998. The microbial loop at the surface of a peatland: structure, function, and impact of nutrient input. Microbial Ecology 35: 83–93.CrossRefPubMedGoogle Scholar
  19. Grospietsch, T. 1958. Wechseltierchen (Rhizopoden). Kosmos, Stuttgart, Germany.Google Scholar
  20. Hájek, M., M. Horsák, P. Hájkova, and D. Dite. 2006. Habitat diversity of central European fens in relation to environmental gradients and an effort to standardize fen terminology in ecological studies. Perspectives in Plant Ecology, Evolution and Systematics 8: 97–114.CrossRefGoogle Scholar
  21. Hendon, D. and D. J. Charman. 1997. The preparation of testate amoebae (Protozoa: Rhizopoda) samples from peat. The Holocene 7: 199–205.CrossRefGoogle Scholar
  22. Hermanowicz, W., W. Dożańska, J. Dojlido, and B. Koziorowski. 1999. Fizyczno-Chemiczne Badania Wody i Ścieków. Arkady, Warszawa, Poland.Google Scholar
  23. Hughes, P. D. M., A. Blundell, D. J. Charman, S. Bartlett, J. R. G. Daniell, A. Wojatschke, and F. M. Chambers. 2006. An 8500 cal. year multi-proxy climate record from a bog in eastern Newfoundland: contributions of meltwater discharge and solar forcing. Quaternary Science Reviews 25: 1208–27.CrossRefGoogle Scholar
  24. Juggins, S. 2003. C2 User Guide. Software for Ecological and Paleoecological Data Analysis and Visualization. University of Newcastle, Newcastle upon Tyne, UK.Google Scholar
  25. Kauppila, T., S. Kihlmanm, and J. Mäkinen. 2006. Distribution of Arcellaceans (testate amoebae) in the sediments of minewater impacted bay of lake Retunen, Finland. Water, Air, and Soil Pollution 172: 337–58.CrossRefGoogle Scholar
  26. Lamentowicz, Ł., M. Gąbka, and M. Lamentowicz. in press. Species composition of testate amoebae (Protists) and environmental parameters in a Sphagnum peatland. Polish Journal of Ecology.Google Scholar
  27. Lamentowicz, M. and E. A. D. Mitchell. 2005. The ecology of testate amoebae (Protists) in Sphagnum in north-western Poland in relation to peatland ecology. Microbial Ecology 50: 48–63.CrossRefPubMedGoogle Scholar
  28. Lamentowicz, M., E. A. D. Mitchell, and W. O. van der Knaap. 2007. Reconstruction of climate during the last 1000 years from a high-resolution testate amoebae sequence in Switzerland. In N. R. Catto (ed.) XVII INQUA Congress. The Tropics: Heat Engine of the Quaternary. Quaternary International 167–168:429.Google Scholar
  29. Lamentowicz, M., K. Tobolski, and E. A. D. Mitchell. 2007. Palaeoecological evidence for anthropogenic acidification of a kettle-hole peatland in northern Poland. The Holocene 17: 1185–96.CrossRefGoogle Scholar
  30. Legendre, P. and L. Legendre. 1998. Numerical Ecology. Elsevier, Amsterdam, Netherlands.Google Scholar
  31. Mirek, Z., H. Piękoś-Mirkowa, A. Zając, and M. Zając. 2002. Flowering Plants and Pteridophytes of Poland, a Checklist. Władysław Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland.Google Scholar
  32. Mitchell, E. A. D. 2003. Identification keys for testate amoebae. http://wslar.epfl.ch/mitchell/edward/Identification_keys/Keys.htm.Google Scholar
  33. Mitchell, E. A. D., A. Buttler, B. G. Warner, and J. M. Gobat. 1999. Ecology of testate amoebae (Protozoa: Rhizopoda) in Sphagnum peatlands in the Jura mountains, Switzerland and France. Ecoscience 6: 565–76.Google Scholar
  34. Moraczewski, J. 1961. Testacea du littoral peu profond du lac Kisajno (Region des lacs de Mazurie). Polskie Archiwum Hydrobiologii 9: 176–94.Google Scholar
  35. Nguyen-Viet, H., D. Gilbert, N. Bernard, E. A. D. Mitchell, and P.-M. Badot. 2004. Relationship between atmospheric pollution characterized by NO2 concentrations and testate amoebae density and diversity. Acta Protozoologica 43: 233–39.Google Scholar
  36. Ochyra, R., J. Zarnowiec, and H. Bednarek-Ochyra. 2003. Census Catalogue of Polish Mosses. Władysław Szafer Institute of Botany, Polish Academy of Sciences, Kraków, Poland.Google Scholar
  37. Offierska, J. 1978. Pełzaki skorupkowe (Testacea) torfowiska otaczającego j. Skrzynkę w Wielkopolskim Parku Narodowym. Badania Fizjograficzne nad Polską Zachodnią Ser. C: 7–38.Google Scholar
  38. Offierska, J. 1984. Zmienność skorupek u niektórych gatunków pełzaków skorupkowych (Testacea) w Wielkopolskim Parku Narodowym. Badania Fizjograficzne nad Polską Zachodnią Ser. C: 154–162.Google Scholar
  39. Offierska-Wawrzyniak, J. 1993. Kopalne i współczesne korzenionózki skorupkowe (Testacea: Rhizopoda) torfowiska Skrzynka w Wielkopolskim Parku Narodowym. Badania Fizjograficzne nad Polską Zachodnią Ser. C: 5–20.Google Scholar
  40. Ogden, C. G. and R. H. Hedley. 1980. An Atlas of Freshwater Testate Amoebae. British Museum (Natural History), London, UK; and Oxford University Press, Oxford, UK.Google Scholar
  41. Opravilova, V. and M. Hájek. 2006. The variation of testacean assemblages (Rhizopoda) along the complete base-richness gradient in fens: a case study from the Western Carpathians. Acta Protozoologica 45: 191–204.Google Scholar
  42. Patterson, R. T. 1996. Arcellaceans (Thecamoebians) as proxies of arsenic and mercury contamination in northeastern Ontario lakes. Journal of Foraminiferal Research 26: 172–83.CrossRefGoogle Scholar
  43. Payne, R., K. Kishaba, J. Blackford, and E. A. D. Mitchell. 2006. The ecology of testate amoebae (Protists) in South-Central Alaska peatlands: building transfer function models for paleoenvironmental studies. The Holocene 16: 403–14.CrossRefGoogle Scholar
  44. Payne, R. J. and E. A. D. Mitchell. 2007. Ecology of testate amoebae from mires in the Central Rhodope Mountains, Greece and development of a transfer function for palaeohydrological reconstruction. Protist 158: 159–71.CrossRefPubMedGoogle Scholar
  45. Schönborn, W. 1966. Testaceen als Bioindikatoren im System der Seentypen Untersuchungen in Masurischen Seen und im Suwalki —Gebiet (Polen). Limnologica 4: 1–11.Google Scholar
  46. Schönborn, W. 1981. A history of rhizopods-colonization of Great Woryty Lake. p. 22–24. In J. Dąbrowski (ed.) Woryty. Studium Archeologiczno-Przyrodnicze Zespołu Osadniczego Kultury Łuzyckiej. Polish Academy of Sciences, Warszawa, Poland.Google Scholar
  47. Schoning, K., D. J. Charman, and S. Wastegard. 2005. Reconstructed water tables from two ombrotrophic mires in eastern central Sweden compared with instrumental meteorological data. The Holocene 15: 111–18.CrossRefGoogle Scholar
  48. ter Braak, C. J. F. and P. Šmilauer. 1998. CANOCO Reference Manual and User’s Guide to Canoco for Windows Software for Canonical Community Ordination (version 4). Centre for Biometry, Wageningen, Netherlands.Google Scholar
  49. Tolonen, K., B. G. Warner, and H. Vasander. 1992. Ecology of testaceans (Protozoa: Rhizopoda) in mires in southern Finland: I. Autecology. Archiv für Protistenkunde 142: 119–38.Google Scholar
  50. Tolonen, K., B. G. Warner, and H. Vasander. 1994. Ecology of testaceans (Protozoa: Rhizopoda) in mires in southern Finland: II. Multivariate analysis. Archiv für Protistenkunde 144: 97–112.Google Scholar
  51. van der Maarel, E.. 1979. Transformation of cover-abundance values in phytosociology and its effect on community similarity. Vegetatio 39: 97–114.CrossRefGoogle Scholar
  52. Warner, B. G. 1987. Abundance and diversity of testate amoebae (Rhizopoda: Testacea) in Sphagnum peatlands in southwestern Ontario, Canada. Archiv für Protistenkunde. 133: 173–89.Google Scholar
  53. Warner, B. G., T. Asada, and N. P. Quinn. 2007. Seasonal influences on the ecology of testate amoebae (Protozoa) in a small Sphagnum peatland in Southern Ontario, Canada. Microbial Ecology 54: 91–100.CrossRefPubMedGoogle Scholar
  54. Warner, B. G. and E. A. D. Mitchell. 2006. Progress and future needs of testate amoebae in palaeoecology. In Book of Abstracts, International Symposium on Testate Amoebae (12–14 September 2006). Antwerp, Belgium.Google Scholar
  55. Wilmshurst, J. M., S. K. Wiser, and D. J. Charman. 2003. Reconstructing Holocene water tables in New Zealand using testate amoebae: differential preservation of tests and implications for the use of transfer functions. The Holocene 13: 61–72.CrossRefGoogle Scholar
  56. Woodland, W. A., D. J. Charman, and P. C. Sims. 1998. Quantitative estimates of water tables and soil moisture in Holocene peatlands from testate amoebae. The Holocene 8: 261–73.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2008

Authors and Affiliations

  • Łukasz Lamentowicz
    • 1
  • Mariusz Lamentowicz
    • 2
  • Maciej Gąbka
    • 1
  1. 1.Department of Hydrobiology Faculty of BiologyAdam Mickiewicz UniversityPoznańPoland
  2. 2.Department of Biogeography and Palaeoecology Faculty of GeosciencesAdam Mickiewicz UniversityPoznańPoland

Personalised recommendations