Advertisement

Wetlands

, Volume 28, Issue 1, pp 1–16 | Cite as

Range dynamics and invasive tendencies in Typha latifolia and Typha angustifolia in eastern North America derived from herbarium and pollen records

  • Jessica G. Shih
  • Sarah A. Finkelstein
Article

Abstract

Typha species are increasingly considered invasive weeds in wetlands of eastern North America. Typha angustifolia and T. × glauca are often seen as more invasive than T. latifolia, but there are few comparative biogeographic data on these three species. We examined 1,127 Typha specimens archived in major herbaria to map changes in the distributions of these species since the late-19th century. We also analyzed pollen records from the North American Pollen Database (NAPD) to examine longer-term trends in abundance of each Typha species. Proportion curves comparing the relative spread of T. angustifolia and T. latifolia reveal a period of enhanced range increase in T. angustifolia in the early to mid-20th century. From the mid-20th century onwards, the two species increased at the same rate. The relatively higher rate of spread in T. angustifolia levels off after 1930 in the more coastal region of New England, but does not stop increasing inland and in more northern regions such as Ontario until after 1970. Pollen data suggest that 80% of relevant sites in the North American Pollen Database showed an increase in the abundance of one or both Typha species over the past 1,000 years. However, there was no significantly greater increase in one type of pollen compared to the other. Typha-type pollen grains in the form of tetrads and monads are recorded in the database throughout the Holocene and late Pleistocene; however, few studies analyzed the morphology of the pollen grains sufficiently to allow for positive identification of T. angustifolia. In the few recent records that made those measurements, small numbers of pre-settlement incidences of T. angustifolia and T. × glauca are recorded. Pollen and herbarium data suggest that T. angustifolia may have been present in North America prior to European settlement, but was not widespread. Herbarium data confirm that the range increase has been considerably larger in T. angustifolia than in T. latifolia since 1880, but both Typha species have been increasing at the same rate for the past several decades, and both will continue to display invasive tendencies in disturbed wetlands.

Key Words

Cattails herbarium specimen human impact invasive species palynology wetlands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Almquist-Jacobson, H., J. E. Almendinger, and S. E. Hobbie. 1992. Influence of terrestrial vegetation on sediment-forming processes in kettle lakes of west-central Minnesota. Quaternary Research 38: 103–16.CrossRefGoogle Scholar
  2. Baker, R. G., P. M. Chumbley, P. M. Witinok, and H. K. Kim. 1990. Holocene vegetational changes in eastern Iowa. Journal of the Iowa Academy of Science 97: 167–77.Google Scholar
  3. Boyd, C. E. 1970. Vascular aquatic plants for mineral nutrient removal from polluted waters. Economic Botany 24: 93–103.Google Scholar
  4. Brix, H., K. Dyhr-Jensen, and B. Lorenzen. 2002. Root-zone acidity and nitrogen source affects Typha latifolia L. growth and uptake kinetics of ammonium and nitrate. Journal of Experimental Botany 53: 2441–50.CrossRefPubMedGoogle Scholar
  5. Case, M. A., K. M. Flinn, J. Jancaitis, A. Alley, and A. Paxton. 2007. Declining abundance of American ginseng (Panax quinquefolius L.) documented by herbarium specimens. Biological Conservation 134: 22–30.CrossRefGoogle Scholar
  6. Chow-Fraser, P. 2005. Ecosystem response to changes in water level of Lake Ontario marshes: lessons from the restoration of Cootes Paradise Marsh. Hydrobiologia 539: 189–204.CrossRefGoogle Scholar
  7. Chow-Fraser, P., V. Lougheed, V. L. Thiec, B. Crosbie, L. Simser, and J. Lord. 1998. Long-term responses of the biotic community to fluctuating water levels and changes in water quality in Cootes Paradise Marsh, a degraded coastal wetland of Lake Ontario. Wetlands Ecology and Management 6: 19–42.CrossRefGoogle Scholar
  8. Comtois, P. G. 1982. Histoire holocène du climat et de la végétation à Lanoraie (Québec). Canadian Journal of Earth Sciences 19: 1938–52.Google Scholar
  9. Confer, S. R. and W. A. Niering. 1992. Comparison of created and natural freshwater emergent wetlands in Connecticut (USA). Wetlands Ecology and Management 2: 143–56.CrossRefGoogle Scholar
  10. Cousens, R. and M. Mortimer. 1995. Dynamics of Weed Populations. Cambridge University Press, Cambridge, UK.Google Scholar
  11. Davis, A. M. 1977. The prairie-deciduous forest ecotone in the upper Middle West. Annals of the Association of American Geographers 67: 204–13.CrossRefGoogle Scholar
  12. Davis, M. B. 1958. Three pollen diagrams from central Massachusetts. American Journal of Science 256: 540–70.Google Scholar
  13. Delisle, F., C. Lavoie, M. Jean, and D. Lachance. 2003. Reconstructing the spread of invasive plants: taking into account biases associated with herbarium specimens. Journal of Biogeography 30: 1033–42.Google Scholar
  14. Dibb, G. C. 1985. Late palaeo-indian settlement patterns along the margins of the Simcoe Lowlands in southcentral Ontario. M.S. Thesis. Trent University, Peterborough, Ontario, Canada.Google Scholar
  15. Dinel, H., P. J. H. Richard, P. E. M. Levesque, and A. C. Larouche. 1986. Origine et évolution du marais tourbeux de Keswick, Ontario, par l’analyse pollinique et macrofossile. Canadian Journal of Earth Sciences 23: 1145–55.CrossRefGoogle Scholar
  16. Dugle, J. R. and T. P. Copps. 1972. Pollen characteristics of Manitoba cattails. The Canadian Field-Naturalist 86: 33–40.Google Scholar
  17. Dunwiddie, P. W. 1990. Postglacial vegetation history of coastal islands in southeastern New England. National Geographic Research 6: 178–95.Google Scholar
  18. Ervin, G. N. and R. G. Wetzel. 2003. An ecological perspective of allelochemical interference in land-water interface communities. Plant and Soil 256: 13–28.CrossRefGoogle Scholar
  19. Faegri, K. and J. Iversen. 1989. Textbook of Pollen Analysis, fourth edition. John Wiley & Sons, Inc, Chichester, UK.Google Scholar
  20. Finkelstein, S. A. 2003. Identifying pollen grains of Typha latifolia, Typha angustifolia, and Typha × glauca. Canadian Journal of Botany 81: 985–90.CrossRefGoogle Scholar
  21. Finkelstein, S. A. and A. M. Davis. 2005. Modern pollen rain and diatom assemblages in a Lake Erie coastal marsh. Wetlands 25: 551–63.CrossRefGoogle Scholar
  22. Finkelstein, S. A., M. C. Peros, and A. M. Davis. 2005. Late Holocene paleoenvironmental change in a Great Lakes coastal wetland: integrating pollen and diatom datasets. Journal of Paleolimnology 33: 1–12.CrossRefGoogle Scholar
  23. Fredlund, G. G. 1995. Late Quaternary pollen record from Cheyenne Bottoms, Kansas. Quaternary Research 43: 67–79.CrossRefGoogle Scholar
  24. Galatowitsch, S. M., N. O. Anderson, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19: 733–55.CrossRefGoogle Scholar
  25. Gleason, H. A. and A. Cronquist. 1995. Manual of Vascular Plants of Northeastern United States and Adjacent Canada, second edition. The New York Botanical Garden, New York, NY, USA.Google Scholar
  26. Grace, J. B. 1988. The effects of nutrient additions on mixture of Typha latifolia L. and Typha domingensis Pers. along a water-depth gradient. Aquatic Botany 31: 83–92.CrossRefGoogle Scholar
  27. Grace, J. B. and J. S. Harrison. 1986. The biology of Canadian weeds. 73. Typha latifolia L., Typha angustifolia L. and Typha xglauca Godr. Canadian Journal of Plant Sciences 66: 361–79.CrossRefGoogle Scholar
  28. Grace, J. B. and R. G. Wetzel. 1981. Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. The American Naturalist 118: 463–74.CrossRefGoogle Scholar
  29. Grace, J. B. and R. G. Wetzel. 1982. Niche differentiation between two rhizomatous plants: Typha latifolia and Typha angustifolia. Canadian Journal of Botany 60: 46–57.CrossRefGoogle Scholar
  30. Grimm, E. C. 1983. Chronology and dynamics of vegetation change in the prairie-woodland region of southern Minnesota, U.S.A. New Phytologist 93: 311–50.CrossRefGoogle Scholar
  31. Grüger, E. 1972. Late Quaternary vegetation development in south-central Illinois. Quaternary Research 2: 217–31.CrossRefGoogle Scholar
  32. Hager, H. A. 2004. Competitive effect versus competitive response of invasive and native wetland plant species. Oecologia 139: 140–49.CrossRefPubMedGoogle Scholar
  33. Hotchkiss, N. and H. L. Dozier. 1949. Taxonomy and distribution of N. American Cat-tails. The American Midland Naturalist 41: 237–54.CrossRefGoogle Scholar
  34. Houlahan, J. E. and C. S. Findlay. 2004. Effect of invasive plant species on temperate wetland plant diversity. Conservation Biology 18: 1132–38.CrossRefGoogle Scholar
  35. Jackson, S. T., R. P. Futyma, and D. A. Wilcox. 1988. A paleoecological test of a classical hydrosere in Lake Michigan Dunes. Ecology 69: 928–36.CrossRefGoogle Scholar
  36. Jacob, D. L. and M. L. Otte. 2004. Influence of Typha latifolia and fertilization on metal mobility in two different Pb-Zn mine tailings types. Science of the Total Environment 333: 9–24.CrossRefPubMedGoogle Scholar
  37. Janssen, C. R. 1984. Modern pollen assemblages and vegetation in the Myrtle Lake Peatland, Minnesota. Ecological Monographs 54: 213–52.CrossRefGoogle Scholar
  38. Kneller, M. and D. M. Peteet. 1993. Late-Quaternary climate in the ridge and valley of Virginia, U.S.A.: changes in vegetation and depositional environment. Quaternary Science Reviews 12: 613–28.CrossRefGoogle Scholar
  39. Kuehn, M. M. 1998. Assessment of hybridization between Typha spp. in North America. Ph.D. Dissertation. McMaster University, Hamilton, Ontario, Canada.Google Scholar
  40. Kuehn, M. M. and B. N. White. 1999. Morphological analysis of genetically identified cattails Typha latifolia, Typha angustifolia, and Typha ×glauca. Canadian Journal of Botany 77: 906–12.CrossRefGoogle Scholar
  41. Laird, K. R., S. C. Fritz, E. C. Grimm, and P. G. Mueller. 1996. Century-scale paleoclimatic reconstruction from Moon Lake, a closed-basin lake in the northern Great Plains. Limnology and Oceanography 41: 890–902.Google Scholar
  42. Liu, K.-B. 1990. Holocene paleoecology of the boreal forest and Great Lakes-St Lawrence forest in northern Ontario. Ecological Monographs 60: 179–212.CrossRefGoogle Scholar
  43. Mack, R. N. 2000. Assessing the extent, status, and dynamism of plant invasions: current and emerging approaches. p. 141–68. In H. A. Mooney and R. J. Hobbs (eds.) Invasive Species in a Changing World. Island Press, Washington, DC, USA.Google Scholar
  44. Manios, T., E. I. Stentiford, and P. A. Millner. 2003. The effect of heavy metals accumulation on the chlorophyll concentration of Typha latifolia plants, growing in a substrate containing sewage sludge compost and watered with metalliferous water. Ecological Engineering 20: 65–74.CrossRefGoogle Scholar
  45. Mbuligwe, S. E. 2004. Comparative effectiveness of engineered wetland systems in the treatment of anaerobically pre-treated domestic wastewater. Ecological Engineering 23: 269–84.CrossRefGoogle Scholar
  46. McAndrews, J. H. 1966. Postglacial history of prairie, savanna, and forest in northwestern Minnesota. Torrey Botanical Club Memoir 22: 1–72.Google Scholar
  47. McAndrews, J. H. 1968. Pollen evidence for the protohistoric development of the “Big Woods” in Minnesota (U.S.A.). Review of Palaeobotany and Palynology 7: 201–11.CrossRefGoogle Scholar
  48. McAndrews, J. H. 2003. Postglacial ecology of the Hiscock Site. p. 190–98. In R. S. Laub (ed.) The Hiscock Site: Late Pleistocene and Holocene Paleoecology and Archaeology of Western New York State. Buffalo Society of Natural Sciences, Buffalo, NY, USA.Google Scholar
  49. McAndrews, J. H., A. A. Berti, and G. Norris. 1973. Key to the Quaternary pollen and spores of the Great Lakes region. The Royal Ontario Museum, Toronto, Ontario, Canada.Google Scholar
  50. McCarthy, F. M. G. 1986. Late Holocene water levels in Lake Ontario: evidence from Grenadier Pond. M.S. Thesis. University of Toronto, Toronto, Ontario, Canada.Google Scholar
  51. McNaughton, S. J. 1968. Autotoxic feedback in relation to germination and seedling growth in Typha latifolia. Ecology 49: 367–69.CrossRefGoogle Scholar
  52. Mihulka, S. and P. Pysek. 2001. Invasion history of Oenothera congeners in Europe: a comparative study of spreading rates in the last 200 years. Journal of Biogeography 28: 597–609.CrossRefGoogle Scholar
  53. Moran, V. and H. Zimmerman. 1991. Biological control of jointed cactus, Opuntia aurantiaca (Cactaceae), in South Africa. Agriculture, Ecosystems and Environment 37: 5–27.CrossRefGoogle Scholar
  54. Mulhouse, J. M. and S. M. Galatowitsch. 2002. Revegetation of prairie pothole wetlands in the mid-continental US: twelve years post-reflooding. Plant Ecology 169: 143–59.CrossRefGoogle Scholar
  55. Myers, J. H. and D. R. Bazely. 2003. Ecology and Control of Introduced Plants. Cambridge University Press, Cambridge, UK.Google Scholar
  56. Nicholls, M. S. and C. D. K. Cook. 1986. The function of pollen tetrads in Typha (Typhaceae). Veroeffentlichungen des Geobotanischen Institutes des Eidgenoessische Technische Hochschule Stiftung Ruebel in Zuerich 87: 112–19.Google Scholar
  57. Ogden III, J. G. 1966. Forest history of Ohio. I. radiocarbon dates and pollen stratigraphy of Silver Lake, Logan County, Ohio. Ohio Journal of Science 66: 387–400.Google Scholar
  58. Pederson, D. C., D. M. Peteet, D. Kurdyla, and T. Guilderson. 2005. Medieval Warming, Little Ice Age, and European impact on the environment during the last millennium in the lower Hudson Valley, New York, USA. Quaternary Research 63: 238–49.CrossRefGoogle Scholar
  59. Pyšek, P. and K. Prach. 1993. Plant invasions and the role of riparian habitats: a comparison of four species alien to central Europe. Journal of Biogeography 20: 413–20.CrossRefGoogle Scholar
  60. Pyšek, P. and K. Prach. 1995. Invasion dynamics of Impatiens glandulifera — a century of spreading reconstructed. Biological Conservation 74: 41–48.CrossRefGoogle Scholar
  61. Saltonstall, K. 2002. Cryptic invasion by a non-native genotype of the common reed, Phragmites australis, into North America. Proceedings of the National Academy of Sciences of the United States of America 99: 2445–49.CrossRefPubMedGoogle Scholar
  62. Selbo, S. M. and A. A. Snow. 2004. The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquatic Botany 78: 361–69.CrossRefGoogle Scholar
  63. Smith, S. G. 1967. Experimental and natural hybrids in North American Typha (Typhaceae). American Midland Naturalist 78: 257–87.CrossRefGoogle Scholar
  64. Smith, S. G. 1987. Typha: its taxonomy and the ecological significance of hybrids. Archiv für Hydrobiologie Beihefte 27: 129–38.Google Scholar
  65. Smith, S. G. 2000. Typhaceae. In Flora of North America Editorial Committee (ed.) 1993+ Flora of North America North of Mexico, Volume 22. Oxford University Press, New York, NY, USA.Google Scholar
  66. Stuckey, R. L. and D. P. Salamon. 1987. Typha angustifolia in North America: a foreigner masquerading as a native. (Abstract). American Journal of Botany 74: 757.Google Scholar
  67. Swain, A. M. 1974. A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments. Ph.D. Dissertation. University of Minnesota, Minneapolis, Minnesota, USA.Google Scholar
  68. Swain, P. C. 1979. The development of some bogs in eastern Minnesota. Ph.D. Dissertation. University of Minnesota, Minneapolis, Minnesota, USA.Google Scholar
  69. Szeicz, J. M. and G. M. MacDonald. 1991. Postglacial vegetation history of oak savanna in southern Ontario. Canadian Journal of Botany 69: 1507–19.CrossRefGoogle Scholar
  70. Takahashi, H. and K. Sohma. 1984. Development of pollen tetrad in Typha latifolia L. Pollen et Spores 26: 5–18.Google Scholar
  71. Tang, C. F., Y. G. Liu, G. M. Zeng, X. Li, W. H. Xu, C. F. Li, and X. Z. Yuan. 2005. Effects of exogenous spermidine on antioxidant system responses of Typha latifolia L. under Cd2+ stress. Journal of Integrative Plant Biology 47: 428–34.CrossRefGoogle Scholar
  72. Tsyusko-Omeltchenko, O. V., N. A. Schable, M. H. Smith, and T. C. Glenn. 2003. Microsatellite loci isolated from narrowleaved cattail Typha angustifolia. Molecular Ecology Notes 3: 535–38.CrossRefGoogle Scholar
  73. Van Zant, K. L. 1979. Late glacial and postglacial pollen and plant macrofossils from Lake West Okoboji, northwestern Iowa. Quaternary Research 12: 358–80.CrossRefGoogle Scholar
  74. Waters, I. and J. M. Shay. 1990. A field study of the morphometric response of Typha glauca shoots to a water depth gradient. Canadian Journal of Botany 68: 2339–43.Google Scholar
  75. Waters, I. and J. M. Shay. 1992. Effect of water depth on population parameters of a Typha glauca stand. Canadian Journal of Botany 70: 349–51.CrossRefGoogle Scholar
  76. Watts, W. A. and R. C. Bright. 1968. Pollen, seed, and mollusk analysis of a sediment core from Pickerel Lake, northeastern South Dakota. Geological Society of America Bulletin 79: 855–76.CrossRefGoogle Scholar
  77. Weisner, S. E. B. 1993. Long-term competitive displacement of Typha latifolia by Typha angustifolia in a eutrophic lake. Oecologia 94: 451–56.CrossRefGoogle Scholar
  78. Weninger, J. M. and J. H. McAndrews. 1989. Late Holocene aggradation in the lower Humber River Valley, Toronto, Ontario. Canadian Journal of Earth Sciences 26: 1842–49.Google Scholar
  79. Wilcox, D. A., S. I. Apfelbaum, and R. D. Hiebert. 1985. Cattail invasion of sedge meadows following hydrologic disturbance in the Cowles Bog Wetland Complex, Indiana Dunes National Lakeshore. Wetlands 4: 115–28.Google Scholar
  80. Wilcox, D. A. and H. A. Simonin. 1987. A chronosequence of aquatic macrophyte communities in dune ponds. Aquatic Botany 28: 227–42.CrossRefGoogle Scholar
  81. Williamson, M. and A. H. Fitter. 1996. The varying success of invaders. Ecology 77: 1661–66.CrossRefGoogle Scholar
  82. Wright, H. E., Jr. and W. A. Watts. 1969. Glacial and vegetational history of northeastern Minnesota. Minnesota Geological Survey SP-11. Special Publications Series University of Minnesota, Minneapolis, Minnesota, USA.Google Scholar
  83. Wright, H. E., Jr., T. C. Winter, and H. L. Patton. 1963. Two pollen diagrams from southeastern Minnesota: problems in the regional late-glacial and postglacial vegetational history. Geological Society of America Bulletin 74: 1371–96.CrossRefGoogle Scholar
  84. Yu, Z., J. H. McAndrews, and D. Siddiqi. 1996. Influences of Holocene climate and water levels on vegetation dynamics of a lakeside wetland. Canadian Journal of Botany 74: 1602–15.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2008

Authors and Affiliations

  • Jessica G. Shih
    • 1
  • Sarah A. Finkelstein
    • 1
  1. 1.Department of GeographyUniversity of TorontoTorontoCanada

Personalised recommendations