Advertisement

Wetlands

, Volume 28, Issue 2, pp 502–512 | Cite as

An in situ mesocosm method for quantifying nitrogen cycling rates in oligotrophic wetlands using 15N tracer techniques

  • Jeffrey R. Wozniak
  • Daniel L. Childers
  • William T. Anderson
  • David T. Rudnick
  • Christopher J. Madden
Article

Abstract

Short term nitrogen uptake dynamics in the marshes of the southern Everglades, USA, were determined through implementation of a field mesocosm and isotopic enrichment method. The approach was tested using six mesocosms, three enriched with a 300‰ 15N tracer, Ca(NO3)2 (± 98% 15N) and three unenriched mesocosms. This 15N tracer technique allowed the determination of nitrogen fluxes between key ecosystem components. The in situ mesocosm experiment was conducted in a freshwater marl prairie marsh habitat for a period of 21 days. Macrophytes (Cladium jamaicense), periphyton, soil, and consumers (Gambusia holbrooki) were sampled at prescribed intervals to determine the optimal sampling periods necessary to capture peak 15N tracer uptake. Over the course of the study period, 15N tracer was detected in all ecosystem components sampled except for soils. Periphyton exhibited the most rapid initial 15N tracer uptake, with an increase of 3.86‰ to 7.79‰ (± 1.70) only 5 minutes after tracer addition. Periphyton 15N signatures continued to increase to 16.49‰ (± 6.45) and 108.15‰ (± 49.40) after 10 minutes and 6 hours, respectively. Increased 15N signatures were also noted in the macrophyte and consumer components, with peak tracer uptake values occurring in aboveground macrophyte tissue at t = 9 day (26.62‰ (± 5.00)), the belowground macrophyte tissue at t = 15 day (22.01‰ (± 5.83)), and in consumers at t = 15 day (297.09‰ (± 127.36)). Tracer uptake by the soil component was minimal with no significant amount of tracer being detected in any of the three soil layers sampled (0–1, 1–5, and 5–10 cm). This testing of the in situ mesocosm and 15N isotopic enrichment approach provides a foundation for further experimentation with the method at this and other wetland study sites.

Key Words

Cladium jamaicense Everglades freshwater flow hydrology marl nitrogen cycle periphyton restoration 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Adey, W. H., M. Finn, P. Kangas, L. Lange, C. Luckett, and D. M. Spoon. 1996. A Florida Everglades mesocosm — model veracity after four years of self-organization. Ecological Engineering 6: 171–224.CrossRefGoogle Scholar
  2. Ahn, C. and M. J. Mitsch. 2002. Scaling considerations of mesocosm wetlands in simulating large created freshwater marshes. Ecological Engineering 18: 327–42.CrossRefGoogle Scholar
  3. Banse, K. 1982. Experimental marine ecosystems enclosures in a historical perspective. p. 11–24. In G. D. Grice and M. R. Reeve (eds.) Marine Mesocosms. Springer-Verlag, New York, NY, USA.Google Scholar
  4. Carpenter, S. R. 1996. Microcosm experiments have limited relevance for community and ecosystem ecology. Ecology 77: 677–80.CrossRefGoogle Scholar
  5. Chambers, R. M. 1992. A fluctuating water-level chamber for biogeochemical experiments in tidal marshes. Estuaries 15: 53–58.CrossRefGoogle Scholar
  6. Connolly, R. M., M. A. Guest, A. J. Melville, and J. M. Oakes. 2004. Sulfur stable isotopes separate producers in marine foodweb analysis. Oecologia 138: 161–67.CrossRefPubMedGoogle Scholar
  7. Craft, C. B. and C. J. Richardson. 1993. Peat accumulation and N, P and organic accumulation in nutrient-enriched and unenriched Everglades peatlands. Ecological Applications 3: 446–58.CrossRefGoogle Scholar
  8. Drenner, R. W. and A. Mazumder. 1999. Microcosm experiments have limited relevance for community and ecosystem ecology: comment. Ecology 80: 1081–85.CrossRefGoogle Scholar
  9. Duever, M. J., J. F. Meeder, L. C. Meeder, and J. M. McCollom. 1994. The climate of south Florida and its role in shaping the Everglades ecosystem. p. 225–48. In S. M. Davis and J. C. Ogden (eds.) Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.Google Scholar
  10. Finn, M. 1996. The mangrove mesocosm of Biosphere 2: design, establishment and preliminary findings. Ecological Engineering 6: 21–56.CrossRefGoogle Scholar
  11. Gaiser, E. E., A. Zafiris, P. L. Ruiz, F. A. C. Tobias, and M. S. Ross. 2006. Tracking rates of ecotone migration due to saltwater encroachment using fossil mollusks in coastal South Florida. Hydrobiologia 569: 237–57.CrossRefGoogle Scholar
  12. Geddes, P. and J. C. Trexler. 2003. Uncoupling of omnivoremediated positive and negative effects on periphyton mats. Community Ecology 136: 585–95.Google Scholar
  13. Gehart, D. Z. and G. E. Likens. 1975. Enrichment experiments for determining nutrient limitation: four methods compared. Limnology and Oceanography 20: 649–53.Google Scholar
  14. Gleason, P. J. and W. Spackman. 1974. Calcareous periphyton and water chemistry in the Everglades. In P. J. Gleason (ed.) Environments of South Florida: Present and Past. University of Miami Press, Miami, FL, USA.Google Scholar
  15. Grice, G. D. and M. R. Reeve (eds.). Marine Mesocosms, Biological and Chemical Research in Experimental Ecosystems. Springer-Verlag, New York, NY, USA.Google Scholar
  16. Gry, M. B., P. M. Gilbert, and C. C. Chen. 1999. Dimension effects of enclosures on ecological processes in pelagic systems. Limnology and Oceanography 44: 1331–40.CrossRefGoogle Scholar
  17. Hendry, M. J., L. I. Wassenaar, and T. K. Birkham. 2002. Microbial respiration and diffusive transport of O2, 16O2, and 18O16O in unsaturated soils: a mesocosm experiment. Geochimica et Cosmochimica Acta 66: 3367–74.CrossRefGoogle Scholar
  18. Holmes, R. M., B. J. Peterson, L. A. Deegan, J. E. Hughes, and B. Fry. 2000. Nitrogen biogeochemistry in the oligohaline zone of a New England estuary. Ecology 81: 416–32.Google Scholar
  19. Howarth, R. W., T. Butler, K. L. Lunde, D. Swaney, and C. R. Chu. 1993. Turbulence and planktonic nitrogen fixation: a mesocosm study. Limnology and Oceanography 38: 1696–1711.CrossRefGoogle Scholar
  20. Hughes, J. E., L. A. Deegan, B. J. Peterson, R. M. Holmes, and B. Fry. 2000. Nitrogen flow through the food web in the oligohaline zone of a New England estuary. Ecology 81: 433–52.CrossRefGoogle Scholar
  21. Iwaniec, D. M., D. L. Childers, D. Rondeau, C. J. Madden, and C. Saunders. 2006. Effects of hydrologic and water quality drivers on periphyton dynamics in the southern Everglades. Hydrobiologia 569: 223–35.CrossRefGoogle Scholar
  22. Kadlec, R. H., C. C. Tanner, V. M. Hally, and M. M. Gibbs. 2005. Nitrogen spiraling in subsurface-flow constructed wetlands: implications fro treatment response. Ecological Engineering 25: 365–81.CrossRefGoogle Scholar
  23. Kemp, W. M., W. R. Boynton, J. J. Cunningham, and J. C. Stevenson. 1980. Microcosms, macrophytes, and hierarchies: environmental research in the Chesapeake Bay. p. 911–36. In J. P. Giesy (ed.) Microcosms in Ecological Research. (DOE Symposium Series 52). US Department of Energy, Washington DC, USA.Google Scholar
  24. Kim, J. G. and E. Rejmankova. 2002. Recent history of sediment deposition in marl- and sand-based marshes of Belize, Central America. Catena 48: 267–91.CrossRefGoogle Scholar
  25. Light, S. S. and J. W. Dineen. 1994. Water control in the Everglades: a historical perspective. p. 47–84. In S. M. Davis and J. C. Ogden (eds.) Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.Google Scholar
  26. MacNally, R. 1997. Scaling artifacts in confinement experiment: a simulation model. Ecological Modeling 99: 229–45.CrossRefGoogle Scholar
  27. Noe, G. B., D. L. Childers, and R. D. Jones. 2001. Phosphorus biogeochemistry and the impact of phosphorus enrichments: why is the Everglades so unique? Ecosystems 4: 603–24.CrossRefGoogle Scholar
  28. Noe, G. B., L. J. Scinto, J. Taylor, D. L. Childers, and R. D. Jones. 2003. Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. Freshwater Biology 48: 1993–2008.CrossRefGoogle Scholar
  29. Odum, E. P. 1984. The mesocosm. BioScience 34: 558–62.CrossRefGoogle Scholar
  30. Parent, S. and A. Morin. 2000. N budget as water quality management tool in closed aquatic mesocosms. Water Research 34: 1846–56.CrossRefGoogle Scholar
  31. Parker, F. M., III. 2000. Quantifying spatial and temporal variability in marsh-water column interactions in a southern Everglades marsh. M.S. Thesis. Florida International University, Miami, FL, USA.Google Scholar
  32. Rejmankova, E. and J. Komarkova. 2000. A function of cyanobacterial mats in phosphorus-limited tropical wetlands. Hydrobiologia 431: 135–53.CrossRefGoogle Scholar
  33. Ross, M. S., J. F. Meeder, J. P. Sah, P. L. Ruiz, and G. J. Telesnicki. 2000. The Southeast Saline Everglades revisited: 50 years of coastal vegetation change. Journal of Vegetation Science 11: 101–12.CrossRefGoogle Scholar
  34. Rudnick, D. T., Z. Chen, D. L. Childers, J. N. Boyer, and T. D. Fontaine, III. 1999. Phosphorus and nitrogen inputs to Florida Bay: the importance of the Everglades watershed. Estuaries 22: 398–416.CrossRefGoogle Scholar
  35. Schaffranek, R. W. 1996. Coupling models for canal and wetland interactions in the south Florida ecosystem. U.S. Geological Survey. Fact Sheet FS-139096:4.Google Scholar
  36. Schindler, D. W. 1998. Replication versus realism: the need for ecosystem-scale experiments. Ecosystems 1: 323–34.CrossRefGoogle Scholar
  37. Stephenson, G. L., P. Hamilton, N. K. Kaushik, J. B. Robinson, and K. R. Solomon. 1984. Spatial distribution of plankton in enclosures of three sizes. Canadian Journal of Fisheries and Aquatic Science 41: 1048–54.CrossRefGoogle Scholar
  38. Sutula, M. A., B. C. Perez, E. Reyes, D. L. Childers, S. Davis, J. W. Day, Jr., D. Rudnick, and F. Sklar. 2003. Factors affecting spatial and temporal variability in material exchange between the Southern Everglades wetlands and Florida Bay (USA). Estuarine, Coastal and Shelf Science 57: 757–81.CrossRefGoogle Scholar
  39. Svendsen, C. and J. M. Weeks. 1997. A simple low-cost field mesocosm for ecotoxicological studies on earthworms. Comparative Biochemical Physiology 117: 31–40.Google Scholar
  40. Trexler, J. C., W. F. Loftus, F. Jordan, J. H. Chick, K. L. Kandl, T. C. McElroy, and O. L. Bass, Jr. 2002. Ecological Scale and Its Implications for Freshwater Fishes in the Florida Everglades. p. 154–81. In J. W. Porter and K. G. Porter (eds.) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, FL, USA.Google Scholar
  41. Vanni, M. J., C. D. Layne, and S. E. Arnott. 1997. “Top down” trophic interactions in lakes: effects of fish on nutrient dynamics. Ecology 78: 1–20.Google Scholar
  42. Zavarzin, G. A., V. K. Orleanskii, L. M. Gerasimenko, S. N. Pushko, and G. T. Ushtinskaya. 2003. Laboratory simulations of cyanobacterial mats of the alkaline geochemical barrier. Microbiology 72: 80–85.CrossRefGoogle Scholar

Copyright information

© The Society of Wetland Scientists 2008

Authors and Affiliations

  • Jeffrey R. Wozniak
    • 1
  • Daniel L. Childers
    • 2
    • 3
  • William T. Anderson
    • 3
    • 4
  • David T. Rudnick
    • 5
  • Christopher J. Madden
    • 5
  1. 1.Department of Wildlife and Fisheries SciencesTexas A & M UniversityCollege StationUSA
  2. 2.Department of Biological SciencesFlorida International UniversityMiamiUSA
  3. 3.Southeast Environmental Research CenterFlorida International UniversityMiamiUSA
  4. 4.Earth Sciences DepartmentFlorida International UniversityMiamiUSA
  5. 5.Everglades DivisionSouth Florida Water Management DistrictWest Palm BeachUSA

Personalised recommendations