Wetlands

, Volume 28, Issue 3, pp 776–792 | Cite as

Does harvesting sustain plant diversity in central Mexican wetlands?

  • Steven J. Hall
  • Roberto Lindig-Cisneros
  • Joy B. Zedler
Article

Abstract

In Central México, wetland plants are harvested for weaving, fodder, and fertilizer. To test whether harvesting alters plant diversity, we compared the effects of harvesting all vegetation once, follow-up harvesting of Typha domingensis Pers. one or three more times, and a non-harvested control, using two sites differing in water depth in an annually burned wetland near Morelia, México. After one year, harvesting treatments increased species richness at both the plot (14-m2) and wetland scales, increased the Shannon diversity index at the plot and subplot (1-m2) scales, and changed plant community composition (measured by Bray-Curtis distance) relative to control plots. Response among harvesting treatments was similar, and increased Typha harvesting did not have additive effects on Typha or on community composition. Grasses and short forbs (< 0.5-m tall) significantly increased in importance value in harvested plots, as did five individual forb species that were capable of vegetative spread. Uncommon species were significantly more likely to be found only in harvested plots than only in control plots, and new species (not initially present at the site) tended to recruit in harvested plots. Most new species were perennials that could likely tolerate additional harvesting. All harvesting treatments reduced Typha height, density, and rhizome starch reserves after five months, and responses were significantly affected by site, water depth, flowering ramet density, and pre-treatment values. Typha recovered in all harvested plots after one year, even when harvested four times, although flowering-ramet density declined in the wetter site. Community composition was more highly correlated with water depth and litter cover than with harvesting in an NMS ordination including both sites. Within sites, harvesting, light availability, leaf area index, and litter cover correlated similarly with variation in community composition. Given that our treatments reflect a subset of actual local management practices, harvesting could provide a sustainable and economically attractive management strategy for biodiversity conservation in this system, while the cessation of harvesting could lead to species loss.

Key Words

dominance haying Mexico non-timber forest products species richness Typha domingensis wetland management 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Albores Zŕate, B. 1995. Tules y sirenas: el impacto ecológico y cultural de la industrialization en el Alto Lerma. El Colegio Mexiquense, Gobierno del Estado de México, Toluca, México.Google Scholar
  2. Allen, T. F. H. and T. B. Starr. 1982. Hierarchy: Perspectives for Ecological Complexity. The University of Chicago Press, Chicago, IL, USA.Google Scholar
  3. Armesto, J. J. and S. T. A. Pickett. 1985. Experiments on disturbance in old—field plant communities: impact on species richness and abundance. Ecology 66: 230–40.CrossRefGoogle Scholar
  4. Bakker, J. P. 1989. Nature Management by Grazing and Cutting. Kluwer Academic Publishers, Dordrecht, The Netherlands.Google Scholar
  5. Bedford, B. L., M. R. Walbridge, and A. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–69.CrossRefGoogle Scholar
  6. Bekker, R. M., G. L. Verweij, R. E. N. Smith, R. Reine, J. P. Bakker, and S. Schneider. 1997. Soil seed banks in European grasslands: does land use affect regeneration perspectives? Journal of Applied Ecology 34: 1293–1310.CrossRefGoogle Scholar
  7. Bobbink, R. and J. H. Willems. 1991. Impact of different cutting regimes on the performance of Brachypodium pinnatum in Dutch Chalk Grassland. Biological Conservation 56: 1–21.CrossRefGoogle Scholar
  8. Braun-Blanquet, J. 1932. Plant Sociology: The Study of Plant Communities. McGraw-Hill Book Company, Inc., New York, NY, USA.Google Scholar
  9. Capece, J. C. and M. Mozaffari. 1997. Agro-ecology research to develop sustainable cattle production practices for Florida. Proceedings of the Soil and Crop Science Society of Florida 56: 131–35.Google Scholar
  10. Chapin III, F. S., E. D. Schulze, and H. A. Mooney. 1990. The ecology and economics of storage in plants. Annual Review of Ecology and Systematics 21: 423–47.CrossRefGoogle Scholar
  11. Clarke, K. R. and R. M. Warwick. 2001. Change in Marine Communities: An Approach to Statistical Analysis and Interpretation, second edition. Primer-E Ltd., Plymouth, UK.Google Scholar
  12. Collins, S. L., A. K. Knapp, J. M. Briggs, J. M. Blair, and E. M. Steinhauer. 1998. Modulation of diversity by grazing and mowing in native tallgrass prairie. Science 280: 745–47.CrossRefPubMedGoogle Scholar
  13. Denslow, J. S. 1980. Patterns of plant apecies diversity during succession under different disturbance regimes. Oecologia 46: 18–21.CrossRefGoogle Scholar
  14. Denslow, J. S. 1985. Disturbance-mediated coexistence of species. p. 307–24. In S. T. A. Pickett and P. White (eds.) The Ecology of Natural Disturbance and Patch Dynamics. Academic Press, Orlando, FL, USA.Google Scholar
  15. Diemer, M., K. Oetiker, and R. Billeter. 2001. Abandonment alters community composition and canopy structure of Swiss calcareous fens. Applied Vegetation Science 4: 237–46.CrossRefGoogle Scholar
  16. Dufrene, M. and P. Legendre. 1997. Species assemblages and indicator species: the need for a flexible asymmetrical approach. Ecological Monographs 67: 345–66.Google Scholar
  17. Figueroa-Amparo, C. 2001. Calidad del agua de la presa La Mintzita, Michoacán. Tesis de Licenciatura, Universidad Michoacána de San Nicolás Hidalgo, Morelia, México.Google Scholar
  18. Fojt, W. and M. Harding. 1995. Thirty years of change in the vegetation communities of three valley mires in Suffolk, England. Journal of Applied Ecology 32: 561–77.CrossRefGoogle Scholar
  19. Fossati, J. and G. Pautou. 1989. Vegetation dynamics in the fens of Chautagne (Savoie, France) after the cessation of mowing. Vegetatio 85: 71–81.CrossRefGoogle Scholar
  20. Godwin, H. 1941. Studies in the ecology of Wicken Fen: IV. Crop-taking experiments. Journal of Ecology 29: 83–106.CrossRefGoogle Scholar
  21. Grace, J. B. and R. G. Wetzel. 1982. Niche differentiation between two rhizomatous plant species: Typha latifolia and Typha angustifolia. Canadian Journal of Botany 60: 46–57.CrossRefGoogle Scholar
  22. Grime, J. P. 1973. Competitive exclusion in herbaceous vegetation. Nature 242: 344–47.CrossRefGoogle Scholar
  23. Grime, J. P. 1979. Plant Strategies and Vegetation Processes. John Wiley & Sons, Inc., New York, NY, USA.Google Scholar
  24. Grubb, P. J. 1977. The maintenance of species-richness in plant communities: the importance of the regeneration niche. Biological Review 52: 107–45.Google Scholar
  25. Güsewell, S., A. Buttler, and F. Klötzli. 1988. Short-term and long-term effects of mowing on the vegetation of two calcareous fens. Journal of Vegetation Science 9: 861–72.CrossRefGoogle Scholar
  26. Hald, A. B. and E. Vinther. 2000. Restoration of a species-rich fen-meadow after abandonment: response of 64 plant species to management. Applied Vegetation Science 3: 15–24.CrossRefGoogle Scholar
  27. Hansson, M. and H. Fogelfors. 2000. Management of a seminatural grassland; results from a 15-year-old experiment in Southern Sweden. Journal of Vegetation Science 11: 31–38.CrossRefGoogle Scholar
  28. Hassid, W. Z. and E. F. Neufeld. 1964. Quantitative determination of starch in plant tissues. p. 33–36. In R. L. Whistler (ed.) Methods in Carbohydrate Chemistry. John Wiley & Sons, Inc., New York, NY, USA.Google Scholar
  29. Heyden, D. 1983. Mitologia y Simbolismo de la Flora en el México Prehispánico. Universidad Nacional Autónoma de México, México City, México.Google Scholar
  30. Howard-Williams, C. 1975. Vegetation changes in a shallow African lake: response of the vegetation to a recent dry period. Hydrobiologia 47: 381–98.CrossRefGoogle Scholar
  31. Jameson, D. A. 1963. Responses of individual plants to harvesting. Botanical Review 29: 532–94.CrossRefGoogle Scholar
  32. Jutila, H. M. and J. B. Grace. 2002. Effects of disturbance on germination and seedling establishment in a coastal prairie grassland: a test of the competitive release hypothesis. Journal of Ecology 90: 291–302.CrossRefGoogle Scholar
  33. Kandus, P. and A. I. Malvárez. 2004. Vegetation patterns and change analysis in the lower delta islands of the Paraná River (Argentina). Wetlands 24: 620–32.CrossRefGoogle Scholar
  34. Kausch, A. P., J. L. Seago, Jr., and L. C. Marsh. 1981. Changes in starch distribution in the overwintering organs of Typha latifolia (Typhaceae). American Journal of Botany 68: 877–80.CrossRefGoogle Scholar
  35. Keddy, P. A. 1990. Competitive hierarchies and centrifugal organization in plant communities. p. 266–90. In J. B. Grace and D. Tilman (eds.) Perspectives on Plant Competition. Academic Press, Inc., San Diego, CA, USA.Google Scholar
  36. Keddy, P. A. 2000. Wetland Ecology: Principles and Conservation. Cambridge University Press, Cambridge, UK.Google Scholar
  37. Kull, K. and M. Zobel. 1991. High species richness in an Estonian wooded meadow. Journal of Vegetation Science 2: 711–14.CrossRefGoogle Scholar
  38. Leach, M. K. and T. J. Givnish. 1996. Ecological determinants of species loss in remnant prairies. Science 273: 1555–58.CrossRefGoogle Scholar
  39. Linde, A. F., T. Janisch, and D. Smith. 1976. Cattail-the significance of its growth, phenology and carbohydrate storage to its control and management. Wisconsin Department of Natural Resources, Madison, WI, USA. Technical Bulletin 94.Google Scholar
  40. Linusson, A.-C, G. A. I. Berlin, and E. G. A. Olsson. 1998. Reduced community diversity in semi-natural meadows in southern Sweden, 1965–1990. Plant Ecology 136: 77–94.CrossRefGoogle Scholar
  41. Lot, A. and A. Novelo. 1988. Vegetacion y flora acuática del Lago de Pátzcuaro, Michoacán, México. The Southwestern Naturalist 33: 167–75.CrossRefGoogle Scholar
  42. Louda, S. M., K. H. Keeler, and R. D. Holt. 1990. Herbivore influences on plant performance and competitive interactions. p. 413–44. In J. B. Grace and D. Tilman (eds.) Perspectives on Plant Competition. Academic Press, Inc., San Diego, CA, USA.Google Scholar
  43. McCoy, M. B., J. M. Rodriguez, and W. J. Mitsch. 1994. Cattail (Typha domingensis) eradication methods in the restoration of a tropical, seasonal, freshwater marsh. p. 469–82. In W. J. Mitsch (ed.) Global Wetlands: Old World and New. Elsevier Science B. V., New York, NY, USA.Google Scholar
  44. McNaughton, S. J. 1979. Grazing as an optimization process: grass-ungulate relationships in the Serengeti. The American Naturalist 113: 691–703.CrossRefGoogle Scholar
  45. McVaugh, R. 1984. Flora Novo-Galiciana: A Descriptive Account of the Plants of Western México. The University of Michigan Press, Ann Arbor, MI, USA.Google Scholar
  46. Middleton, B. A., B. Holsten, and R. van Diggelen. 2006. Biodiversity management of fens and fen meadows by grazing, cutting and burning. Applied Vegetation Science 9: 307–16.CrossRefGoogle Scholar
  47. Naveh, Z. and R. H. Whittaker. 1979. Structural and floristic diversity of shrublands and woodlands in Northern Israel and other Mediterranean areas. Vegetatio 41: 171–90.CrossRefGoogle Scholar
  48. Peet, N. B., A. R. Watkinson, D. J. Bell, and U. R. Sharma. 1999. The conservation management of Imperata cylindrica grassland in Nepal with fire and cutting: an experimental approach. Journal of Applied Ecology 36: 374–87.CrossRefGoogle Scholar
  49. Peet, R. K., D. C. Glenn-Lewin, and J. W. Wolf. 1983. Prediction of man’s impact on plant species diversity: a challenge for vegetation science. p. 41–54. In W. Holzner, M. J. A. Werger, and I. Ikusima (eds.) Man’s Impact on Vegetation. Dr W. Junk Publishers, The Hague, Netherlands.Google Scholar
  50. Pennings, S. C. and R. M. Callaway. 2000. The advantages of clonal integration under different ecological conditions: a community-wide test. Ecology 81: 709–16.Google Scholar
  51. Pérez-Arteaga, K. J. Gaston, and M. Kershaw. 2002. Undesignated sites in México qualifying as wetlands of international importance. Biological Conservation 107: 47–57.CrossRefGoogle Scholar
  52. Rejmánková, E. 1992. Ecology of creeping macrophytes with special reference to Ludwigia peploides (H.B.K.) Raven. Aquatic Botany 43: 283–99.CrossRefGoogle Scholar
  53. Reyes, J. 1992. La production artesanal. p. 159–79. In V. M. Toledo, A. Argueta, and P. Avila (eds.) Plan Ptzcuaro 2000. Fundación Freidrich, Representación en México, México City, México.Google Scholar
  54. Rojas Moreno, J. and A. N. Retana. 1995. Flora y vegetación acuática del Lago de Cuitzeo, Michoacán, México. Acta Botánica Mexicana 31: 1–17.Google Scholar
  55. Ryser, P., R. Langenauer, and A. Gigon. 1995. Species richness and vegetation structure in a limestone grassland after 15 years management with six biomass removal regimes. Folia Geobotanica 30: 157–67.CrossRefGoogle Scholar
  56. Rzedowski, G. C. and J. Rzedowski. 2001. Flora Fanerogámica del Valle de México, second edition. Instituto de Ecología A.C. y Comisión Nacional para el Conocimiento y Uso de la Biodiversidad, Pátzcuaro, Michoacán, México.Google Scholar
  57. Sale, P. J. M. and R. G. Wetzel. 1983. Growth and metabolism of Typha species in relation to cutting treatments. Aquatic Botany 15: 321–34.CrossRefGoogle Scholar
  58. Smith, R. S. and L. Jones. 1991. The phenology of mesotrophic grassland in the Pennine Dales, Northern England: historic hay cuting dates, vegetation variation and plant species phenologies. Journal of Applied Ecology 28: 42–59.CrossRefGoogle Scholar
  59. Smith, R. S., R. S. Shiel, D. Millward, P. Corkhill, and R. A. Sanderson. 2002. Soil seed banks and the effects of meadow management on vegetation change in a 10-year meadow field trial. Journal of Applied Ecology 39: 279–93.CrossRefGoogle Scholar
  60. Soto-Galera, E., J. Paulo-Maya, E. López-López, J. A. Serna-Hernández, and J. Lyons. 1999. Change in fish fauna as indication of aquatic ecosystem condition in Río Grande de Morelia-Lago de Cuitzeo Basin, México. Environmental Management 24: 133–40.CrossRefPubMedGoogle Scholar
  61. Urban, N. H., S. M. Davis, and N. G. Aumen. 1993. Fluctuations in sawgrass and cattail densities in Everglades Water Conservation Area 2A under varying nutrient, hydrologic and fire regimes. Aquatic Botany 46: 203–23.CrossRefGoogle Scholar
  62. Verhoeven, J. T. A., W. Koerselman, and B. Beltman. 1988. The vegetation of fens in relation to their hydrology and nutrient dynamics: a case study. p. 249–82. In J. J. Symoens (ed.) Vegetation of Inland Waters. Kluwer Academic Publishers, Boston, MA, USA.Google Scholar
  63. Wardrop, D. H., M. E. Kentula, D. L. Stevens, Jr., S. F. Jensen, and R. P. Brooks. 2007. Assessment of wetland condition: an example from the Upper Juniata watershed in Pennsylvania, USA. Wetlands 27: 416–31.CrossRefGoogle Scholar
  64. West, R. C. 1948. Cultural Geography of The Modern Tarascan Area. The Smithsonian Institution, Washington, DC, USA. Institute of Social Anthropology Publication No. 7.Google Scholar
  65. Wheeler, B. D. and K. E. Giller. 1982. Species richness of herbaceous fen vegetation in Broadland, Norfolk in relation to the quantity of above-ground plant material. Journal of Ecology 70: 179–200.CrossRefGoogle Scholar
  66. Zobel, M. 1992. Plant species coexistence: the role of historical, evolutionary and ecological factors. Oikos 65: 314–20.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2008

Authors and Affiliations

  • Steven J. Hall
    • 1
  • Roberto Lindig-Cisneros
    • 2
  • Joy B. Zedler
    • 3
  1. 1.Nelson Institute for Environmental StudiesUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Centro de Investigaciones en EcosistemasUniversidad Nacional Autónoma de MéxicoMoreliaMéxico
  3. 3.Botany Department and ArboretumUniversity of Wisconsin-MadisonMadisonUSA

Personalised recommendations