, Volume 28, Issue 3, pp 686–694 | Cite as

Macroinvertebrate community response to eutrophication in an oligotrophic wetland: An in situ mesocosm experiment

  • Shawn E. Liston
  • Susan Newman
  • Joel C. Trexler


Eutrophication from anthropogenic nutrient enrichment is a primary threat to the oligotrophic freshwater marshes of southern Florida. Macrophyte and periphyton response to increased phosphorus (P) has been well documented in both correlative and experimental studies, but the response of consumer communities remains poorly understood, especially in southern marl prairies. We conducted a P-loading experiment in in situ mesocosms in Taylor Slough, Everglades National Park, and examined the response of macroinvertebrate communities. Mesocosms at two sites were loaded weekly with P at four levels: control (0 g P/m2/yr), low (0.2 g P/m2/yr), intermediate (0.8 g P/m2/yr), and high (3.2 g P/m2/ yr). After ∼2 yrs of P-loading, macroinvertebrates were sampled using periphyton mat and benthic floc cores. Densities of macroinvertebrate taxa (no./g AFDM) were two to 16 times higher in periphyton mats than benthic floc. Periphyton biomass decreased with enrichment at one site, and periphyton was absent from many intermediate and all high P treatments at both sites. Total macroinvertebrate density in periphyton mats increased with intermediate P loads, driven primarily by chironomids and nematodes. Conversely, total macroinvertebrate density in benthic floc decreased with enrichment, driven primarily by loss of chironomids and ceratopogonids (Dasyhelea). This study suggests that macroinvertebrate density increases with enrichment until periphyton mats are lost, after which it decreases, and mat infauna fail to move into benthic substrates in response to mat loss. These results were noted at nutrient levels too low to yield anoxia, and we believe that the decrease of macroinvertebrate density resulted from a loss of habitat. This work illustrates the importance of periphyton mats as habitat for macroinvertebrates in the Everglades. This study also indicates that in this system, macroinvertebrate sampling should be designed to target periphyton mats or conducted with special attention to inclusion of substrates relative to their coverage.

Key Words

Benthic Chironomidae Everglades Hyalella Periphyton phosphorus 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Brauns, M., X.-F. Garcia, M. T. Push, and N. Walz. 2007. Eulittoral macroinvertebrate communities of lowland lakes: discrimination among trophic states. Freshwater Biology 52: 1022–32.CrossRefGoogle Scholar
  2. Browder, J. A., P. J. Gleason, and D. R. Swift. 1994. Periphyton in the Everglades: spatial variation, environmental correlates, and ecological implications. p. 379–416. In S. M. Davis and J. C. Ogden (eds.) Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.Google Scholar
  3. Carpenter, S. R., J. J. Cole, J. R. Hodgson, J. F. Kitchell, M. L. Pace, D. Bade, K. L. Cottingham, T. E. Essington, J. N. Houser, and D. E. Schindler. 2001. Trophic cascades, nutrients, and lake productivity: whole-lake experiments. Ecological Monographs 71: 163–86.CrossRefGoogle Scholar
  4. Chambers, P. A., R. Meissner, F. J. Wrona, H. Rupp, H. Guhr, J. Seeger, J. M. Culp, and R. B. Brua. 2006. Changes in nutrient loading in an agricultural watershed and its effects on water quality and stream biota. Hydrobiologia 556: 399–415.CrossRefGoogle Scholar
  5. Clarke, K. R. 1993. Non-parametric multivariate analyses of change in community structure. Australian Journal of Ecology 18: 117–43.CrossRefGoogle Scholar
  6. Clarke, K. R. and R. M. Warwick. 1994. Change in Marine Communities: An Approach to Statistical Analyses and Interpretation. Natural Environmental Research Council, Plymouth Marine Laboratory, Plymouth, UK.Google Scholar
  7. Cross, W. F., J. B. Wallace, A. D. Rosemond, and S. L. Eggert. 2006. Whole-system nutrient enrichment increases secondary productivity in a detritus-based ecosystem. Ecology 87: 1556–65.CrossRefPubMedGoogle Scholar
  8. Davis, S. M., L. H. Gunderson, W. A. Park, J. Richardson, and J. Mattson. 1994. Landscape dimension, composition, and function in a changing Everglades ecosystem. p. 419–44. In S. M. Davis and J. C. Ogden (eds.) Everglades: The Ecosystem and Its Restoration. St. Lucie Press, Delray Beach, FL, USA.Google Scholar
  9. Duinen, G. A., T. Timm, A. J. P. Smolders, A. M. T. Brock, W. C. E. P. Verberk, and H. Esselink. 2006. Differential response of aquatic oligochaetes to increased nutrient availability — a comparative study between Estonian and Dutch raised bogs. Hydrobiologia 564: 143–55.CrossRefGoogle Scholar
  10. Feio, M. J., S. F. P. Almeida, S. C. Craveiro, and A. J. Calado. 2007. Diatoms and macroinvertebrates provide consistent and complimentary information on environmental quality. Fundamental and Applied Limnology/Archiv für Hydrobiologie 169: 247–58.CrossRefGoogle Scholar
  11. Gabor, T. S., H. R. Murkin, M. P. Stainton, J. A. Boughen, and R. D. Titman. 1994. Nutrient additions to wetlands in the Interlake region of Manitoba, Canada: effects of a single pulse addition in spring. Hydrobiologia 279/280: 497–510.CrossRefGoogle Scholar
  12. Gaiser, E. E., D. L. Childers, R. D. Jones, J. H. Richards, L. J. Scinto, and J. C. Trexler. 2006. Periphyton responses to eutrophication in the Florida Everglades: cross-system patterns of structural and compositional change. Limnology and Oceanography 51: 617–30.CrossRefGoogle Scholar
  13. Gaiser, E. E., J. C. Trexler, J. H. Richards, D. L. Childers, D. Lee, A. L. Edwards, L. J. Scinto, K. Jayachandaran, G. B. Noe, and R. D. Jones. 2005. Cascading ecological effects of low-level phosphorus enrichment in the Florida Everglades. Journal of Environmental Quality 34: 717–23.PubMedGoogle Scholar
  14. Hann, B. J. and L. G. Goldsborough. 1997. Responses of a prairie wetland to press and pulse additions of inorganic nitrogen and phosphorus: invertebrate community structure and interactions. Archiv für Hydrobiologie 140: 169–94.Google Scholar
  15. Jahnke, B. J., D. H. Rickerl, T. Kirschenmann, D. E. Hubbard, and D. Kringen. 2001. Wetland invertebrate abundances and correlations with wetland water nutrients. Proceedings of the South Dakota Academy of Science 80: 321–34.Google Scholar
  16. Jones, R. D. 2001. Phosphorus cycling. p. 450–55. In C. J. Hurst, R. L. Crawford, G. R. Knudsen, M. J. McInerney, and L. D. Stetzenbach (eds.) Manual of Environmental Microbiology, second edition. ASM Press, Washington, DC, USA.Google Scholar
  17. King, R. S. 2001. Dimensions of invertebrate assemblage organization across a phosphorus-limited Everglades landscape. Ph.D. Dissertation. Duke University, Durham, NC, USA.Google Scholar
  18. Langdon, P. G., Z. Ruiz, K. P. Brodersen, and I. D. L. Foster. 2006. Assessing lake eutrophication using chironomids: understanding the nature of community response in different lake types. Freshwater Biology 51: 562–77.CrossRefGoogle Scholar
  19. Liston, S. E. 2006. Interactions between nutrient availability and hydroperiod shape macroinvertebrate communities in Florida Everglades marshes. Hydrobiologia 569: 343–57.CrossRefGoogle Scholar
  20. Liston, S. E. and J. C. Trexler. 2005. Spatiotemporal patterns in community structure of macroinvertebrates inhabiting calcareous periphyton mats. Journal of the North American Benthological Society 24: 832–44.CrossRefGoogle Scholar
  21. McCormick, P. V. and J. A. Laing. 2003. Effects of increased phosphorus loading on dissolved oxygen in a subtropical wetland, the Florida Everglades. Wetlands Ecology and Management 11: 199–216.CrossRefGoogle Scholar
  22. McCormick, P. V., S. Newman, S. Miao, D. E. Gawlik, D. Marley, K. R. Reddy, and T. D. Fontaine. 2002. Effects of anthropogenic phosphorus inputs on the Everglades. p. 83–126. In J. W. Porter and K. G. Porter (eds.) The Everglades, Florida Bay, and Coral Reefs of the Florida Keys: An Ecosystem Sourcebook. CRC Press, Boca Raton, FL, USA.Google Scholar
  23. McCormick, P. V. and M. B. O’Dell. 1996. Quantifying periphyton responses to phosphorus enrichment in the Florida Everglades: a synoptic-experimental approach. Journal of the North American Benthological Society 15: 450–68.CrossRefGoogle Scholar
  24. McCormick, P. V., M. B. O’Dell, R. B. E. Shuford, III, J. G. Backus, and W. C. Kennedy. 2001. Periphyton responses to experimental phosphorus enrichment in a subtropical wetland. Aquatic Botany 71: 119–39.CrossRefGoogle Scholar
  25. McCormick, P. V., R. B. E. Shuford, III, and P. S. Rawlik. 2004. Changes in macroinvertebrate community structure and function along a phosphorus gradient in the Florida Everglades. Hydrobiologia 529: 113–32.CrossRefGoogle Scholar
  26. Newman, S., S. Miao, A. L. Wright, and K. R. Reddy. 2002. Biogeochemical and macrophyte responses. In S. Newman, P. V. McCormick, S. L. Miao, J. Trexler, K. R. Reddy, R. B. E. Shuford, III, A. L. Wright, S. Baker, and X. Pagan (eds.) Effects of changes in phosphorus levels on the central and southern Everglades. EPA Agreement #CR827565-01-0. Report submitted to EPA Gulf Breeze, FL.Google Scholar
  27. Noe, G. B., L. J. Scinto, J. Taylor, D. L. Childers, and R. D. Jones. 2003. Phosphorus cycling and partitioning in an oligotrophic Everglades wetland ecosystem: a radioisotope tracing study. Freshwater Biology 48: 1993–2008.CrossRefGoogle Scholar
  28. Rader, R. B. and C. J. Richardson. 1994. Response of macroinvertebrates and small fish to nutrient enrichment in the northern Everglades. Wetlands 14: 134–46.Google Scholar
  29. Saloom, M. E. and R. S. Duncan. 2005. Low dissolved oxygen levels reduce anti-predator behaviours of the freshwater clam Corbicula fluminea. Freshwater Biology 50: 1233–38.CrossRefGoogle Scholar
  30. Shaw, R. G. and T. Mitchell-Olds. 1993. Anova for unbalanced data: an overview. Ecology 74: 1638–45.CrossRefGoogle Scholar
  31. Smith, S. E. L. 2004. Defining the role of floating periphyton mats in shaping food-web dynamics in the Florida Everglades. Ph.D. Dissertation. Florida International University, Miami, FL, USA.Google Scholar
  32. Steinman, A. D., J. Conklin, P. J. Bohlen, and D. G. Uzarski. 2003. Influence of cattle grazing and pasture land use on macroinvertebrate communities in freshwater wetlands. Wetlands 23: 877–89.CrossRefGoogle Scholar
  33. Trexler, J. C., S. Baker, and X. Pagan. 2002. Response of invertebrates and fish to changes in phosphorus levels in the central and southern Everglades. In S. Newman, P. V. McCormick, S. L. Miao, J. Trexler, K. R. Reddy, R. B. E. Shuford, III, A. L. Wright, S. Baker, and X. Pagan (eds.) 2002. Effects of changes in phosphorus levels on the central and southern Everglades. EPA Agreement # CR827565-01-0. Report submitted to EPA Gulf Breeze, FL.Google Scholar
  34. Turner, A. M., J. C. Trexler, C. F. Jordan, S. J. Slack, P. Geddes, J. H. Chick, and W. F. Loftus. 1999. Targeting ecosystem features for conservation: standing crops in the Florida Everglades. Conservation Biology 13: 898–911.CrossRefGoogle Scholar
  35. U.S. Environmental Protection Agency. 1983. Methods for chemical analyses of water and wastes. Environmental Monitoring and Support Laboratory, Cincinnati, OH, USA.Google Scholar
  36. U.S. Environmental Protection Agency. 1986. Test methods for evaluating solid waste, physical and chemical methods. US EPA, Cincinnati, OH, USA.Google Scholar
  37. White, J. R., K. R. Reddy, and M. Z. Moustafa. 2004. Influence of hydrologic regime and vegetation on phosphorus retention in Everglades stormwater treatment area wetlands. Hydrological Processes 18: 343–55.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2008

Authors and Affiliations

  • Shawn E. Liston
    • 1
  • Susan Newman
    • 2
  • Joel C. Trexler
    • 1
  1. 1.Department of Biological SciencesFlorida International UniversityMiamiUSA
  2. 2.Everglades DivisionSouth Florida Water Management DistrictWest Palm BeachUSA

Personalised recommendations