Wetlands

, Volume 28, Issue 3, pp 676–685

Stabilized water levels and Typha invasiveness

  • Aaron M. Boers
  • Joy B. Zedler
Article

Abstract

Because Typha × glauca often dominates wetlands where humans have stabilized the natural hydrologic regime, we 1) compared its expansion rates where water levels were stabilized vs. fluctuating and 2) explored the potential for stabilized water levels to allow plants to accumulate more phosphorus (P) and increase growth. In three Wisconsin marshes, the area dominated by Typha expanded linearly over time, but rates were higher where water levels were stabilized than where they fluctuated naturally (based on nine aerial photos from 1963 to 2000). In a large wetland (412 ha) behind a dam, Typha × glauca expanded 81,152 m2/year, and clone diameters extended 3.9 ± 0.61 m/year. In contrast, a mixed stand (mostly T. angustifolia) in an upstream wetland with fluctuating water levels expanded only 2,327 m2/year, and clones extended only 2.5 ± 0.75 m/year. While various factors could have caused these differences, a separate two-factor experiment in outdoor microcosms supported the hypothesis that stabilized water levels alone can enhance T. × glauca spread. The experiment indicated that both stabilized water levels and P additions increased P accumulation and growth of T. × glauca. Constant inundation (5–10 cm deep) allowed T. × glauca to produce 56% more biomass (61.6 ± 4.0 g) than a regime with two drawdowns (39.4 ± 1.9 g; p < 0.001). Plants under constant inundation accumulated 0.15 ± 0.007 g P, which was 36% more than with one drawdown (0.12 ± 0.004 g; p < 0.001) and 67% more than with two drawdowns (0.09 ± 0.005 g; p < 0.001). Also as expected, the addition of 2 g P/m2 increased biomass 23% more than the control (57.8 ± 3.0 vs. 46.9 ± 3.0 g/plant; p = 0.02). Our microcosm results suggest that unavailable P can shift to a form that T. × glauca can use. Thus, internal eutrophication can augment rates of T. × glauca invasion.

Key Words

Hydroperiod internal eutrophication invasive species P release Phosphorus Typha × glauca water control structures wetland 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Albert, D. A. and L. D. Minc. 2004. Plants as regional indicators of Great Lakes coastal wetland health. Aquatic Ecosystem Health and Management 7: 233–47.CrossRefGoogle Scholar
  2. Aldous, A., P. McCormick, C. Ferguson, S. Graham, and C. Craft. 2005. Hydrologic regime controls soil phosphorus fluxes in restoration and undisturbed wetlands. Restoration Ecology 13: 341–47.CrossRefGoogle Scholar
  3. Bedford, B. L., M. R. Walbridge, and A. Aldous. 1999. Patterns in nutrient availability and plant diversity of temperate North American wetlands. Ecology 80: 2151–69.Google Scholar
  4. Boers, A. M. 2006. The effects of stabilized water levels on invasion by hybrid cattail (Typha × glauca). Ph.D. Dissertation. University of Wisconsin, Madison, WI, USA.Google Scholar
  5. Boers, A. M., R. L. D. Veltman, and J. B. Zedler. 2007. Typha × glauca dominance and extended hydroperiod constrain restoration of wetland diversity. Ecological Engineering 29: 232–44.CrossRefGoogle Scholar
  6. Carlson, R. E. 1977. A trophic state index for lakes. Limnology and Oceanography 22: 361–69.CrossRefGoogle Scholar
  7. Childers, D. L., R. F. Doren, R. Jones, G. B. Noe, M. Rugge, and L. J. Scinto. 2003. Decadal change in vegetation and soil phosphorus pattern across the Everglades landscape. Journal of Environmental Quality 32: 344–62.PubMedCrossRefGoogle Scholar
  8. Day, R. T., P. A. Keddy, J. McNeill, and T. Carleton. 1988. Fertility and disturbance gradients: a summary model for riverine marsh vegetation. Ecology 69: 1044–54.CrossRefGoogle Scholar
  9. DeLaune, R. D., A. Jugsujinda, and K. R. Reddy. 1999. Effect of root oxygen stress on phosphorus uptake by cattail. Journal of Plant Nutrition 22: 459–66.CrossRefGoogle Scholar
  10. Fassett, N. C. and B. Calhoun. 1952. Introgression between Typha latifolia and T. angustifolia. Evolution 6: 367–79.CrossRefGoogle Scholar
  11. Frieswyk, C. B., C. Johnston, and J. B. Zedler. In press. Quantifying and qualifying dominance in vegetation. Journal of Great Lakes Research.Google Scholar
  12. Frieswyk, C. B. and J. B. Zedler. 2007. Vegetation change in Great Lakes coastal wetlands: deviation from the historical cycle. Journal of Great Lakes Research 33: 366–80.CrossRefGoogle Scholar
  13. Galatowitsch, S. M., N. O. Anderson, and P. D. Ascher. 1999. Invasiveness in wetland plants in temperate North America. Wetlands 19: 733–55.Google Scholar
  14. Gittings, H. E. 2005. Hydrogeologic controls on springs in the Mukwonago River watershed, SE Wisconsin. M.S. Thesis. University of Wisconsin, Madison, WI, USA.Google Scholar
  15. Hill, N. M., P. A. Keddy, and I. C. Wisheu. 1998. A hydrological model for predicting the effects of dams on the shoreline vegetation of lakes and reservoirs. Environmental Management 22: 723–36.CrossRefPubMedGoogle Scholar
  16. Keough, J. R., T. A. Thompson, G. R. Guntenspurgen, and D. A. Wilcox. 1999. Hydrogeomorphic factors and ecosystem responses in coastal wetlands of the Great Lakes. Wetlands 19: 821–34.CrossRefGoogle Scholar
  17. King, R. S., C. J. Richardson, D. L. Urban, and E. A. Romanowicz. 2004. Spatial dependency of vegetation—environment linkages in an anthropogenically influenced wetland ecosystem. Ecosystems 7: 75–97.CrossRefGoogle Scholar
  18. Koerselman, W., M. B. Van Kerkhoven, and J. T. A. Verhoeven. 1993. Release of inorganic nitrogen, phosphorus and potassium in peat soils: effect of temperature, water chemistry and water level. Biogeochemistry 20: 63–81.CrossRefGoogle Scholar
  19. Kuehn, M. M., J. E. Minor, and B. N. White. 1999. An examination of hybridization between the cattail species Typha latifolia and Typha angustifolia using random amplified polymorphic DNA and chloroplast DNA markers. Molecular Ecology 8: 1981–90.CrossRefPubMedGoogle Scholar
  20. Kuehn, M. M. and B. N. White. 1999. Morphological analysis of genetically identified cattails Typha latifolia, Typha angustifolia, and Typha × glauca. Canadian Journal of Botany 77: 906–12.CrossRefGoogle Scholar
  21. Lee, D. W. 1975. Population variation and introgression in North American Typha. Taxon 24: 633–41.CrossRefGoogle Scholar
  22. Lorenzen, B., H. Brix, I. A. Mendelssohn, K. L. McKee, and S. L. Miao. 2001. Growth, biomass allocation and nutrient use efficiency in Cladium jamaicense and Typha domingensis as affected by phosphorus and oxygen availability. Aquatic Botany 70: 117–33.CrossRefGoogle Scholar
  23. Mulhouse, J. M. and S. M. Galatowitsch. 2003. Revegetation of prairie pothole wetlands in the mid-continental US: twelve years post re-flooding. Plant Ecology 169: 143–59.CrossRefGoogle Scholar
  24. National Oceanic and Atmospheric Administration. 2005. National Weather Service, Climate. Online: http://www.weather. gov/climate/index.php?wfo=mkx.Google Scholar
  25. Neill, C. 1990. Effects of nutrients and water levels on emergent macrophyte biomass in a prairie marsh. Canadian Journal of Botany 68: 1007–14.Google Scholar
  26. Newman, S., J. B. Grace, and J. W. Koebel. 1996. Effects of nutrients and hydroperiod on Typha, Cladium, and Eleocharis: implications for everglades restoration. Ecological Applications 6: 774–83.CrossRefGoogle Scholar
  27. Pant, H. K. and K. R. Reddy. 2001. Phosphorus sorption characteristics of estuarine sediments under different redox conditions. Journal of Environmental Quality 30: 1474–80.PubMedCrossRefGoogle Scholar
  28. Patrick, W. H. and R. A. Khalid. 1974. Phosphate release and sorption by soils and sediments: effect of aerobic and anaerobic conditions. Science 186: 53–55.CrossRefPubMedGoogle Scholar
  29. Petersen, J. E., W. M. Kemp, R. Bartleson, W. R. Boynton, C. Chen, J. C. Cornwell, R. H. Gardner, D. C. Hinkle, E. D. Houde, T. C. Malone, W. P. Mowitt, L. Murray, L. P. Sanford, J. C. Stevenson, K. L. Sundberg, and S. E. Suttles. 2003. Multiscale experiments in coastal ecology: improving realism and advancing theory. BioScience 53: 1181–97.CrossRefGoogle Scholar
  30. Phillips, I. R. 1998. Phosphorus availability and sorption under alternating waterlogged and drying conditions. Communications in Soil Science and Plant Analysis 29: 3045–59.CrossRefGoogle Scholar
  31. Richardson, C. J. 1999. The role of wetlands in storage, release, and cycling of phosphorus on the landscape: a 25 year retrospective. p. 47–68. In K. R. Reddy (ed.) Phosphorus Biogeochemistry in Sub-Tropical Ecosystems. CRC Press/ Lewis Publishers, Boca Raton, FL, USA.Google Scholar
  32. Richardson, C. J. and P. E. Marshall. 1986. Processes controlling movement, storage, and export of phosphorus in a fen peatland. Ecological Monographs 56: 279–302.CrossRefGoogle Scholar
  33. Selbo, S. M. and A. A. Snow. 2004. The potential for hybridization between Typha angustifolia and Typha latifolia in a constructed wetland. Aquatic Botany 78: 361–69.CrossRefGoogle Scholar
  34. Sharitz, R. R., S. A. Wineriter, M. H. Smith, and E. H. Liu. 1980. Comparison of isozymes among Typha species in the eastern United States. American Journal of Botany 67: 1297–1303.CrossRefGoogle Scholar
  35. Shay, J. M., P. M. J. de Geus, and M. R. M. Kapinga. 1999. Changes in shoreline vegetation over a 50-year period in the Delta Marsh, Manitoba in response to water levels. Wetlands 19: 413–25.CrossRefGoogle Scholar
  36. Shoemaker, T. 2002. Evaluation of the hydrology and hydraulics of Eagle Spring Lake, Eagle, WI. M.S. Thesis. University of Wisconsin, Madison, WI, USA.Google Scholar
  37. Smith, S. G. 1967. Experimental and natural hybrids in North American Typha (Typhaceae). American Midland Naturalist 78: 257–87.CrossRefGoogle Scholar
  38. Smith, S. G. 1987. Typha: its taxonomy and the ecological significance of its hybrids. Archiv für Hydrobiologie Beiheft. Ergebnisse der Limnologie 27: 129–38.Google Scholar
  39. Svengsouk, L. J. and W. J. Mitsch. 2001. Dynamics of mixtures of Typha latifolia and Schoenoplectus tabernaemontani in nutrientenrichment wetland experiments. American Midland Naturalist 145: 309–24.CrossRefGoogle Scholar
  40. Tompkins, T. M. and J. Taylor. 1983. Hybridization in Typha in Genesee County, Michigan. Michigan Botanist 22: 127–31.Google Scholar
  41. Tsyusko, O. V., M. H. Smith, R. R. Sharitz, and T. C. Glenn. 2005. Genetic and clonal diversity of two cattail species, Typha latifolia and T. angustifolia (Typhaceae), from Ukraine. American Journal of Botany 92: 1161–69.CrossRefGoogle Scholar
  42. van der Valk, A. G. 2000. Vegetation dynamics and models. p. 125–61. In H. R. Murkin, A. G. van der Valk, and W. R. Clark (eds.) Prairie Wetland Ecology: The Contribution of the Marsh Ecology Research Program. Iowa State University Press, Ames, IA, USA.Google Scholar
  43. Venterink, H. O., T. E. Davidsson, K. Kiehl, and L. Leonardson. 2002. Impact of drying and re-wetting on N, P, and K dynamics in a wetland soil. Plant and Soil 243: 119–30.CrossRefGoogle Scholar
  44. Waters, I. and J. M. Shay. 1991. Effective water depth on population parameters of a Typha glauca stand. Canadian Journal of Botany 70: 349–51.CrossRefGoogle Scholar
  45. WDNR (Wisconsin Department of Natural Resources). 2005. WDNR — Lulu Lake State Natural Area. Online: http://www. dnr.state.wi.us/org/land/er/sna/snal38.htm.Google Scholar
  46. Wilcox, D. A. 1993. Effects of water-level regulation on wetlands of the Great Lakes. Great Lakes. Wetlands 4: 1–2, 11.Google Scholar
  47. Wilcox, D. A., S. I. Apfelbaum, and R. D. Hiebert. 1985. Cattail invasion of sedge meadows following hydrologic disturbance in the Cowles Bog wetland complex, Indiana Dunes National Lakeshore. Wetlands 4: 115–28.CrossRefGoogle Scholar
  48. Wilcox, D. A., T. A. Thompson, R. K. Booth, and J. R. Nicholas. 2007. Lake-level variability and water availability in the Great Lakes. U.S. Geological Survey Circular 1311. Reston, VA, USA.Google Scholar
  49. Windeis, S., S. E. Travis, and J. Marburger. 2005. Assessment of cattail (Typha spp.) genetic status in three Great Lakes National Parks. Abstract. Final Program, 25th International Symposium, North American Lake Management Society. p. 112–13. Madison, WI, USA.Google Scholar
  50. Woo, I. and J. B. Zedler. 2002. Can nutrients alone shift a sedge meadow towards dominance by the invasive Typha × glauca? Wetlands 22: 509–21.CrossRefGoogle Scholar
  51. Young, E. O. and D. S. Ross. 2001. Phosphate release from seasonally flooded soils: a laboratory microcosm study. Journal of Environmental Quality 30: 91–101.PubMedCrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2008

Authors and Affiliations

  • Aaron M. Boers
    • 1
  • Joy B. Zedler
    • 1
  1. 1.Department of BotanyUniversity of WisconsinMadisonUSA

Personalised recommendations