, 28:995 | Cite as

Nestedness in playa odonates as a function of area and surrounding land-use

  • Crystal N. Craig
  • Bryan A. Reece
  • Nancy E. McIntyre


As degradation of wetlands continues to occur as a result of human activities, it is important to identify aquatic and amphibious species’ extinction risks and the relative hospitalities of sites to support intact biotic communities; one such technique involves comparing the nestedness of assemblages as an assay of predictability and stability. We measured the degree of nestedness of odonate communities (Odonata: dragonflies and damselflies) in the playa wetland complex of the Texas panhandle (data from 23 species in 73 playas in the summers of 2003–05) under current conditions as well as four simulations of future socioeconomic and climate change. Compared to randomized (null model) assemblages, significant nestedness was found for the system as a whole as well as for each year separately and for playas within each of the two dominant regional forms of land cover (cropland and grassland). Cropland and grassland playas were further split into three size categories, based on natural size breaks. Although departures from nestedness (idiosyncrasy) were unrelated to playa size or surrounding land use, larger playas surrounded by cropland displayed lower nestedness than did smaller ones whereas grassland playas showed the opposite pattern. This relationship between playa area and surrounding land-use type showed that there is lower stability in odonate community composition in even large playas if those playas are surrounded by agriculture. Departures from nestedness mainly consisted of unexpected species presences rather than absences, with idiosyncratic species being larger in total body length and including two range extensions. Under simulations of playa losses, community patterns were similar to contemporary data, suggesting that the ephemeral and dynamic nature of playas may already expose the odonate community to selective pressures possible under future land conversion.

Key Words

damselfly dragonfly Odonata Texas 

Literature Cited

  1. Abbott, J. C. 2005. Dragonflies and Damselflies of Texas and the South-Central United States. Princeton University Press, Princeton, NJ, USA.Google Scholar
  2. Abbott, J. C. 2006. Dragonflies and Damselflies (Odonata) of Texas, Volume 1. Odonata Survey of Texas, Austin, TX, USA.Google Scholar
  3. Abbott, J. C. 2007. Dragonflies and Damselflies (Odonata) of Texas, Volume 2. Odonata Survey of Texas, Austin, TX, USA.Google Scholar
  4. Almeida-Neto, M., P. R. Guimarães, and T. M. Lewinsohn. 2007. On nestedness analyses: rethinking matrix temperature and anti-nestedness. Oikos 116: 716–22.CrossRefGoogle Scholar
  5. Ashworth, W. 2006. Ogallala Blue: Water and Life on the High Plains. W. W. Norton & Company, New York, NY, USA.Google Scholar
  6. Atmar, W. and B. D. Patterson. 1993. The measure of order and disorder in the distribution of species in a fragmented habitat. Oecologia 96: 373–82.CrossRefGoogle Scholar
  7. Bick, G. H. and J. C. Bick. 1963. Behavior and population structure of the damselfly, Enallagma civile (Hagen) (Odonata: Coenagriidae). Southwestern Naturalist 8: 57–84.CrossRefGoogle Scholar
  8. Boecklen, W. J. 1997. Nestedness, biogeographic theory, and the design of nature reserves. Oecologia 112: 123–42.CrossRefGoogle Scholar
  9. Bolen, E. G., L. M. Smith, and H. L. Schramm. 1989. Playa lakes: prairie wetlands of the Southern High Plains. BioScience 39: 615–23.CrossRefGoogle Scholar
  10. Conrad, K. F., K. H. Willston, I. F. Harvey, C. J. Thomas, and T. N. Sherratt. 1999. Dispersal characteristics of seven odonate species in an agricultural landscape. Ecography 22: 524–31.Google Scholar
  11. Corbet, P. S. 1999. Dragonflies: Behavior and Ecology of Odonata. Cornell University Press, Ithaca, NY, USA.Google Scholar
  12. Cordero, A. 1995. Correlates of male mating success in two natural populations of the damselfly Ischnura graellsii (Odonata: Coenagrionidae). Ecological Entomology 20: 213–22.CrossRefGoogle Scholar
  13. Covich, A. P., S. C. Fritz, P. J. Lamb, R. D. Marzolf, W. J. Matthews, K. A. Poiani, E. E. Prepas, M. B. Richman, and T. C. Winter. 1997. Potential effects of climate change on aquatic ecosystems of the Great Plains of North America. Hydrological Processes 11: 993–1021.CrossRefGoogle Scholar
  14. Cross, W. F., J. P. Benstead, P. C. Frost, and S. A. Thomas. 2005. Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshwater Biology 50: 1895–1912.CrossRefGoogle Scholar
  15. Dahl, T. E. 2000. Status and Trends of Wetlands in the Conterminous United States, 1986–1997. U.S. Dept. of the Interior, Fish and Wildlife Service, Washington, DC, USA.Google Scholar
  16. Fincke, O. M. 1982. Lifetime mating success in a natural population of the damselfly, Enallagma hageni (Walsh) (Odonata: Coenagrionidae). Behavioral Ecology and Sociobiology 10: 293–302.CrossRefGoogle Scholar
  17. Findlay, C. S. and J. Houlahan. 1997. Anthropogenic correlates of species richness in southeastern Ontario wetlands. Conservation Biology 11: 1000–09.CrossRefGoogle Scholar
  18. Fischer, J. F. and D. B. Lindenmayer. 2002. Treating the nestedness temperature calculator as a “black box” can lead to false conclusions. Oikos 99: 193–99.CrossRefGoogle Scholar
  19. Fish, E. B., E. L. Atkinson, T. R. Mollhagen, C. H. Shanks, and C. M. Brenton. 1998. Playa lakes digital database for the Texas portion of the Playa Lakes Joint Venture region. Geospatial Technologies Lab, Department of Natural Resources Management, Texas Tech University, Lubbock, TX, USA.Google Scholar
  20. Foley, J. A., R. DeFries, G. P. Asner, C. Barford, G. Bonan, S. R. Carpenter, F. S. Chapin, M. T. Coe, G. C. Daily, H. K. Gibbs, J. H. Helkowski, T. Holloway, E. A. Howard, C. J. Kucharik, C. Monfreda, J. A. Patz, I. C. Prentice, N. Ramankutty, and P. K. Snyder. 2005. Global consequences of land use. Science 309: 570–74.CrossRefPubMedGoogle Scholar
  21. Ganzhorn, J. U. and B. Eisenbeiß. 2001. The the [sic] concept of nested species assemblages and its utility for understanding effects of habitat fragmentation. Basic and Applied Ecology 2: 87–95.CrossRefGoogle Scholar
  22. Goodyear, K. L. and S. McNeill. 1999. Bioaccumulation of heavy metals by aquatic macro-invertebrates of different feeding guilds: a review. The Science of the Total Environment 229: 1–19.CrossRefGoogle Scholar
  23. Gray, M. J., L. M. Smith, and R. Brenes. 2004a. Effects of agricultural cultivation on demographics of Southern High Plains amphibians. Conservation Biology 18: 1368–77.CrossRefGoogle Scholar
  24. Gray, M. J., L. M. Smith, and R. I. Leyva. 2004b. Influence of agricultural landscape structure on a Southern High Plains, USA, amphibian assemblage. Landscape Ecology 19: 719–29.CrossRefGoogle Scholar
  25. Gustavson, T. C., V. T. Holliday, and S. D. Hovorka. 1994. Development of playa basins, Southern High Plains, Texas and New Mexico. p. 5–14. In L. V. Urban and A. W. Wyatt (eds.) Proceedings of the Playa Basin Symposium. Water Resources Center, Texas Tech University, Lubbock, TX, USA.Google Scholar
  26. Guthery, F. S., F. C. Bryant, B. Kramer, A. Stoecker, and M. Dvorack. 1981. Playa Assessment Study. U.S. Water and Power Resources Service, Southwest Region, Amarillo, TX, USA.Google Scholar
  27. Hall, D. L., R. W. Sites, E. B. Fish, T. R. Mollhagen, D. L. Moorhead, and M. R. Willig. 1999. Playas of the Southern High Plains: The macroinvertebrate fauna. p. 635–65. In D. P. Batzer, R. B. Rader, and S. A. Wissinger (eds.) Invertebrates in Freshwater Wetlands of North America. John Wiley & Sons, Inc., New York, NY, USA.Google Scholar
  28. Haukos, D. A. and L. M. Smith. 1994. The importance of playa wetlands to biodiversity of the Southern High Plains. Landscape and Urban Planning 28: 83–98.CrossRefGoogle Scholar
  29. Haukos, D. A. and L. M. Smith. 2003. Past and future impacts of wetland regulations on playa ecology in the Southern Great Plains. Wetlands 23: 577–89.CrossRefGoogle Scholar
  30. Hernandez, K. M., B. A. Reece, and N. E. McIntyre. 2006. Effects of anthropogenic land use on Odonata in playas of the Southern High Plains. Western North American Naturalist 66: 273–78.CrossRefGoogle Scholar
  31. Johnson, B. T., C. R. Saunders, H. O. Saunders, and R. S. Campbell. 1971. Biological magnification and degradation of DDR and Aldrin by freshwater invertebrates. Journal of the Fisheries Research Board of Canada 28: 705–09.Google Scholar
  32. Joyce, L. A., D. Ojima, G. A. Seielstad, R. Harriss, J. Lackett. 2003. Potential consequences of climate variability and change for the Great Plains. p. 191–217. In National Assessment Synthesis Team Report for the U.S. Global Change Research Program (eds.). Climate Change Impacts on the United States: The Potential Consequences of Climate Variability and Change. Cambridge University Press, Cambridge, UK.Google Scholar
  33. Lande, R. 1993. Risks of population extinction from demographic and environmental stochasticity and random catastrophes. American Naturalist 142: 911–27.CrossRefGoogle Scholar
  34. Luo, H. R., L. M. Smith, B. L. Allen, and D. A. Haukos. 1997. Effects of sedimentation on playa wetland volume. Ecological Applications 7: 247–52.CrossRefGoogle Scholar
  35. McAbendroth, L., A. Foggo, S. D. Rundle, and D. T. Bilton. 2005. Unravelling nestedness and spatial pattern in pond assemblages. Journal of Animal Ecology 74: 41–49.CrossRefGoogle Scholar
  36. Needham, J. G., M. J. Westfall Jr, and M. L. May. 2000. Dragonflies of North America. Scientific Publishers, Inc., Gainesville, FL, USA.Google Scholar
  37. Oertli, B., D. A. Joye, E. Castella, R. Juge, D. Cambin, and J.-B. Lachavanne. 2002. Does size matter? The relationship between pond area and biodiversity. Biological Conservation 104: 59–70.CrossRefGoogle Scholar
  38. Sahlén, G. and K. Ekestubbe. 2001. Identification of dragonflies (Odonata) as indicators of general species richness in boreal forest lakes. Biodiversity and Conservation 10: 673–90.CrossRefGoogle Scholar
  39. SAS Institute. 2004. SAS/STAT User’s Guide, Version 9. SAS Institute, Inc., Cary, NC, USA.Google Scholar
  40. Schmidt, E. 1985. Habitat inventorization, characterization and bioindication by a “representative spectrum of Odonata species (RSO). Odonatologica 14: 127–33.Google Scholar
  41. Schutte, G., M. Reich, and H. Plachter. 1997. Mobility of the rheobiont damselfly Calopteryx splendens (Harris) in fragmented habitats (Zygoptera: Calopterygidae). Odonatologica 26: 317–27.Google Scholar
  42. Smith, L. M. 2003. Playas of the Great Plains. University of Texas, Austin, TX, USA.Google Scholar
  43. Tsai, J.-S., L. S. Venne, S. T. McMurry, and L. M. Smith. 2007. Influences of land use and wetland characteristics on water loss rates and hydroperiods of playas in the Southern High Plains, USA. Wetlands 27: 683–92.CrossRefGoogle Scholar
  44. Ulrich, W. and N. J. Gotelli. 2007. Null model analysis of species nestedness patterns. Ecology 88: 1824–31.CrossRefPubMedGoogle Scholar
  45. Westfall, M. J. Jr and M. L. May. 1996. Damselflies of North America. Scientific Publishers, Inc., Gainesville, FL, USA.Google Scholar
  46. Wright, D. H., A. Gonzalez, and D. C. Coleman. 2007. Changes in nestedness in experimental communities of soil fauna undergoing extinction. Pedobiologia 50: 497–503.CrossRefGoogle Scholar
  47. Wright, D. H., B. D. Patterson, G. M. Mikkelson, A. Cutler, and W. Atmar. 1998. A comparative analysis of nested subset patterns of species composition. Oecologia 113: 1–20.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2008

Authors and Affiliations

  • Crystal N. Craig
    • 1
  • Bryan A. Reece
    • 1
  • Nancy E. McIntyre
    • 1
  1. 1.Department of Biological SciencesTexas Tech UniversityLubbockUSA

Personalised recommendations