Advertisement

Wetlands

, Volume 28, Issue 3, pp 852–865 | Cite as

Changes in the sultan marshes ecosystem (Turkey) in satellite images 1980–2003

  • Filiz Dadaser-Celik
  • Marvin E. Bauer
  • Patrick L. Brezonik
  • Heinz G. Stefan
Article

Abstract

Sultan Marshes, an important ecosystem and wildlife refuge in the Develi Basin in Turkey, originally included two lakes and two freshwater marshes, with a total surface area of 176 km2, surrounded by wet meadows and salt steppes. The Develi Irrigation Project changed the Sultan Marshes severely starting in 1988 by diverting surface and ground-water flows from the wetlands. Water diversions caused more than 1 m decline in water levels in the lakes and marshes. Spatial changes in the Sultan Marshes ecosystem with time were analyzed using Landsat images from 1980, 1987, 2000, and 2003 that were transformed into five information classes (water, marsh, agriculture, dry lake, and steppe) by unsupervised classification. Changes were identified by a post-classification change detection method. Classification accuracies were 89% to 93%, and accuracies of the change maps were 80% to 85%. The analysis showed that lake surface areas decreased by 93% from 1980 to 2003. Yay Lake was almost completely dry in 2003. The marshes receded more than 50%, and the surrounding steppe expanded into the lakes and marshes. Agriculture expanded in the western and eastern parts (Kepir Marshes) of the study area. Although the years 2000 and 2003 had lower than average annual precipitation, and lower annual precipitation than in 1980 and 1987, the changes in Sultan Marshes are so large that they cannot be solely attributed to weather fluctuations. Surface water diversions and increased use of spring waters and ground water are responsible for the changes.

Key Words

ecosystems hydrology irrigation Landsat Sultan Marshes water wetlands 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Akçakaya, H. R., Y. S. Barış, and C. C. Bilgin. 1983. Sultan Sazlıgı koruma projesi sonuç raporu (Sultan Marshes conservation project final report). Unpublished Report, Ankara, Turkey.Google Scholar
  2. Congalton, R. and K. Green. 1999. Assessing the Accuracy of Remotely Sensed Data: Principles and Practices. CRC/Lewis Press, Boca Raton, FL, USA.Google Scholar
  3. Coppin, P. R., I. G. Jonckheere, K. Nackaerts, B. Muys, and E. F. Lambin. 2004. Digital change detection in ecosystem monitoring: a review. International Journal of Remote Sensing 25(9): 1565–96.CrossRefGoogle Scholar
  4. Dadaser-Celik, F., P. L. Brezonik, and H. G. Stefan. 2008. Agricultural and environmental changes after irrigation management transfer in the Develi Basin, Turkey. Irrigation and Drainage Systems 22: 47–66.CrossRefGoogle Scholar
  5. Dadaser-Celik, F., P. L. Brezonik, and H. G. Stefan. in press. Hydrologic sustainability of the Sultan Marshes in Turkey. Water International.Google Scholar
  6. Dadaser-Celik, F., H. G. Stefan, and P. L. Brezonik. 2006. Dynamic hydrologic model of the Örtülüakar Marsh in Turkey. Wetlands 26: 1089–1102.CrossRefGoogle Scholar
  7. Elvidge, C. D., T. Miura, W. T. Jansen, D. P. Groeneveld, and J. Ray. 1998. Monitoring trends in wetland vegetation using a Landsat MSS time series. p. 191–210. In R. S. Lunetta and C. D. Elvidge (eds.) Remote Sensing Change Detection: Environmental Monitoring Methods and Applications. Taylor and Francis Ltd., London, UK.Google Scholar
  8. Frazier, P. and K. Page. 2000. Water body detection and delineation with Landsat TM data. Photogrammetric Engineering and Remote Sensing 66: 1461–67.Google Scholar
  9. Gürer, İ 2004. Kayseri Sultansazlıgı Tabiatı Koruma Alam’nın su kullanim ve yönetim planlaması araştırması (Kayseri Sultan Marshes Nature Conservation Area water consumption and water management research). Çevre ve Orman Bakanlıgı (Ministry of Environment and Forestry), Ankara, Turkey.Google Scholar
  10. Gürpmar, T. 1994. Sultan Sazlıgı’nın ornitolojik önemi ve dogal su düzeni (Ornitological importance of Sultan Marshes and its natural water regime). p. 64–78. In Kayseri Sultan Sazlıgı — Erciyes Çevre Sorunları Sempozyumu (Kayseri Sultan Marshes — Mount Erciyes Environmental Problems Symposium). Kayseri Valilgi (Kayseri Governer’s Office), Kayseri, Turkey.Google Scholar
  11. Haack, B. 1996. Monitoring wetland changes with remote sensing: an East African example. Environmental Management 20: 411–19.CrossRefPubMedGoogle Scholar
  12. Hollis, G. E. 1990. Environmental impacts of development on wetlands. Hydrological Sciences Journal 35: 411–28.CrossRefGoogle Scholar
  13. Jensen, J. R. 2005. Introductory Digital Image Processing: A Remote Sensing Perspective. Pearson Prentice Hall, Upper Saddle River, NJ, USA.Google Scholar
  14. Jensen, J. R., K. Rutchey, M. Koch, and S. Narumalani. 1995. Inland wetland change detection in the Everglades Water Conservation Area 2A using a time series of normalized remotely sensed data. Photogrammetric Engineering and Remote Sensing 61: 199–209.Google Scholar
  15. Karadeniz, N. 1995. Sultan Sazlıgı örneginde ıslak alanların çevre koruma açısmdan önemi üzerine bir araştırma (Research on the value of wetlands in environmental conservation, case study: Sultan Marshes). Ph.D. Dissertation. Peysaj Mimarlıgı (Department of Landscape Agriculture), Ankara Üniversitesi (Ankara University), Ankara, Turkey.Google Scholar
  16. Karadeniz, N. 2000. Sultan Sazligi, Ramsar site in Turkey. Humedales Mediterráneos 1: 107–14.Google Scholar
  17. Kiziroglu, I., L. Turan, and A. Erdogan. 1992. Sultan Sazlıgı’nın eko-ornitolojisi ve son durumu (Eco-ornitology of the Sultan Marshes and its latest condition). Hacettepe Üniversitesi Egitim Fakültesi Dergisi (Journal of Hacettepe University Education Faculty) 7: 217–27.Google Scholar
  18. Lee, K. H. and R. S. Lunetta. 1995. Wetlands detection methods. p. 249–75. In J. G. Lyon and J. McCarthy (eds.) Wetland and Environmental Applications of GIS. CRC Press, Inc., Boca Raton, FL, USA.Google Scholar
  19. Lunetta, R. S. 1999. Applications, project formulation, and analytical approach. p. 1–19. In R. S. Lunetta and C. D. Elvidge (eds.) Remote Sensing Change Detection: Environmental Monitoring Methods and Applications. Taylor and Francis Ltd., London, UK.Google Scholar
  20. Lunetta, R. S. and M. E. Balogh. 1999. Application of multitemporal Landsat 5 TM imagery for wetland identification. Photogrammetric Engineering and Remote Sensing 65: 1303–10.Google Scholar
  21. Lyon, J. G. 2001. Wetland Landscape Characterization: GIS, Remote Sensing and Image Analysis. Ann Harbor Press, Chelsea, MI, USA.Google Scholar
  22. Magnin, G. and M. Yarar. 1997. Important Bird Areas in Turkey. The Society for the Protection of Nature (DHKD), İstanbul, Turkey.Google Scholar
  23. Maingi, J. K. and S. E. Marsh. 2001. Assessment of environmental impacts of river basin development on the riverine forests of eastern Kenya using multi-temporal satellite data. International Journal of Remote Sensing 22(14): 2701–29.CrossRefGoogle Scholar
  24. Mitsch, W. J. and J. G. Gosselink. 1993. Wetlands. Van Nostrand Reinhold, New York, NY, USA.Google Scholar
  25. Munyati, C. 2000. Wetland change detection on the Kafue Flats, Zambia, by classification of a multitemporal remote sensing image dataset. International Journal of Remote Sensing 21: 1787–1806.CrossRefGoogle Scholar
  26. Özesmi, S. L. and M. E. Bauer. 2002. Satellite remote sensing of wetlands. Wetland Ecology and Management 10: 381–402.CrossRefGoogle Scholar
  27. Özesmi, U. and İ Gürer. 2003. Sultan Sazlıgı: Biodiversity and natural resources management pilot project in Turkey (GEF-II). In Assessment and Provision of Environmental Flows in Mediterranean Watercourses: Basic Concepts, Methodologies and Emerging Practice, Mediterranean Case Study. IUCN-The World Conservation Union. Available online at: http://www. iucn.org/themes/wani/flow/cases/Turkey.pdf.Google Scholar
  28. Özesmi, U., M. Somuncu, and H. Tuncel. 1993. Sultan Sazlıgı ekosistemi (Sultan Marshes ecosystem). Ankara Üniversitesi Türkiye Cografyası Araştirma ve Uygulama Merkezi Dergisi (Journal of Ankara University Turkish Geography Research and Application Center) 2: 275–88.Google Scholar
  29. Paşaoglu, S. 1994. DSI Develi Havzası ekoloji koruma projesi (DSI Develi Basin ecology conservation project). p. 86–122. In Kayseri Sultan Sazlıgı — Erciyes Çevre Sorunları Sempozyumu (Kayseri Sultan Marshes — Mount Erciyes Environmental Problems Symposium). Kayseri Valilgi (Kayseri Governer’s Office), Kayseri, Turkey.Google Scholar
  30. Singh, A. 1989. Digital change detection techniques using remotely-sensed data. International Journal of Remote Sensing 10: 989–1003.CrossRefGoogle Scholar
  31. Tømmervik, H., K. A. Høgda, and I. Solheim. 2003. Monitoring vegetation changes in Pasvik (Norway) and Pechenga in Kola Peninsula (Russia) using multitemporal Landsat MSS/TM data. Remote Sensing of Environment 85: 370–88.CrossRefGoogle Scholar
  32. Tou, J. T. and R. C. Gonzales. 1974. Pattern Recognition Principles. Addison-Wesley, Reading, MA, USA.Google Scholar
  33. Yang, X. and C. P. Lo. 2002. Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area. International Journal of Remote Sensing 23: 1775–98.CrossRefGoogle Scholar
  34. Zainal, A. J. M., D. H. Dalby, and I. S. Robinson. 1993. Monitoring marine ecological changes on the east coast of Bahrain with Landsat TM. Photogrammetric Engineering & Remote Sensing 59: 415–21.Google Scholar

Copyright information

© Society of Wetland Scientists 2008

Authors and Affiliations

  • Filiz Dadaser-Celik
    • 1
  • Marvin E. Bauer
    • 2
  • Patrick L. Brezonik
    • 3
  • Heinz G. Stefan
    • 3
  1. 1.Water Resources Science ProgramUniversity of MinnesotaSt. PaulUSA
  2. 2.Dept. of Forest ResourcesUniversity of MinnesotaSt. PaulUSA
  3. 3.Dept. of Civil EngineeringUniversity of MinnesotaMinneapolisUSA

Personalised recommendations