, Volume 24, Issue 4, pp 848–858 | Cite as

Ecosystem metabolism in a Mediterranean shallow lake (Laguna de Santa Olalla, Doñana National Park, SW Spain)

  • Ana I. López-ArchillaEmail author
  • Salvador Mollá
  • María C. Coleto
  • María C. Guerrero
  • Carlos Montes


Santa Olalla is a Mediterranean permanent coastal shallow lake, with high annual solar irradiation and warm water temperature throughout the year. Ecosystem metabolism, chlorophyll a concentrations, and physical and chemical features were studied in the Santa Olalla lake from March 1998 to February 2000. Gross primary productivity (GPP) and community respiration (CR) were determined using a modification of the one-station diel oxygen change method. Chlorophyll a, Secchi depth, and total phosphorous and nitrogen reveal Santa Olalla to be a hypereutrophic system. Values of GPP and CR were very high (average 7.88 g O2 m−2 d−1 and 8.52 g O2 m−2 d−1, respectively). Principal components analysis and a multiple regression model showed photosynthetically active radiation and soluble reactive phosphorus to be the main factors that control primary production in Santa Olalla. Also, the annual and interannual variation of water level in Santa Olalla seems to be an important factor that influences the ecological processes of this system. Mean net daily metabolism during a hydrologic period was not statistically different from 0 (0.008 g O2 m−2 d−1, p=0.99), and the average P/R ratio was not statistically different from 1 (1.164, p=0.343). These results suggest that the primary productivity was balanced with community respiration in Santa Olalla lake. The high values of metabolic rates and low nutrient concentrations in this aquatic ecosystem suggest a quick recycling of nutrients, which were assimilated almost instantaneously after mineralization.

Key words

community metabolism shallow lake Mediterranean wetlands gross primary production net primary production community respiration 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Álvarez, S. 2002. Descomposición de materia orgánica en lagunas someras del Manto Eólico Litoral de Doñana. Ph D. Dissertation. Universidad Autónoma de Madrid, Madrid. Spain.Google Scholar
  2. Álvarez, S., E. Rico, M. C. Guerrero, and C. Montes. 2001. Decomposition of Juncus maritimus in two shallow lakes of Doñana National Park. VII. Decomposition of organic matter in standing waters. International Review of Hydrobiology 86:541–554.CrossRefGoogle Scholar
  3. Anderson, R. S. 1974. Diurnal primary production patterns in seven lakes and ponds in Alberta (Canada). Oecologia 14:1–17.CrossRefGoogle Scholar
  4. APHA. 1989. Standard Methods for the Examination of Water and Wastewater, 17th Edition. L. S. Clesceri, A. E. Greenberg, R. Rhodes Trussel (eds.). 1. American Public Health Association, Washington, DC, USA.Google Scholar
  5. Bachmann, R. W., M. V. Hoyer, and D. E. Canfield, Jr. 2000. Internal heterotrophy following the switch from macrophytes to algae in lake Apopka, Florida. Hydrobiologia 418:217–227.CrossRefGoogle Scholar
  6. Cole, G. A. 1994. Textbook of Limnology, 4th Edition. Waveland Press Inc. Prospect Heights, IL, USA.Google Scholar
  7. Cole, J. J., M. L. Pace, S. R. Carpenter, and J. F. Kitchell. 2000. Persistence of net heterotrophy in lakes during nutrient addition and food web manipulation. Limnology and Oceanography 45: 1718–1730.Google Scholar
  8. Comin, F., R. Julia, and M. P. Comin. 1991. Fluctuation: the key aspect for the ecological interpretation of saline lakes ecosystem. Oecologia Aquatica 10:127–135.Google Scholar
  9. Florín, M. 1994. Funcionamiento de lagunas salinas temporales manchegas, relación entre fluctuaciones hídricas, hidroquímicas y dinámica trófica. Ph. D. Dissertation. Universidad Autónoma de Madrid, Madrid, Spain.Google Scholar
  10. Florín, M. and C. Montes. 1998. Which are the relevant scales to assess primary production of Mediterranean semiarid salt lakes? International Journal of Ecology and Environmental Sciences 24: 161–177.Google Scholar
  11. Ford, W. F., P. I. Boon, and L. Kerrie. 2002. Methane and oxygen dynamics in a shallow floodplain lake: the significance of periodic stratification. Hydrobiologia 485:97–110.CrossRefGoogle Scholar
  12. Gelda, K. R. and S. W. Effler. 2002. Metabolic rate estimates for a eutrophic lake from diel oxygen signals. Hydrobiologia 485:51–66.CrossRefGoogle Scholar
  13. Gervais, F. and H. Behrendt. 2003. Primary productivity in a polymictic lake- temporal dynamics, controlling factors and trophic state. International Review of Hydrobiology88:16–33.CrossRefGoogle Scholar
  14. Gromiec, M. J. 1989. Reaeration. p. 33–64. In S. E. Jørgensen and M. J. Gromiec (eds.) Mathematical Submodels in Water Quality Systems. Developments in Environmental Modelling 14. Elsevier, Amsterdam, The Netherlands.Google Scholar
  15. Hall, C. A. S. and R. Moll. 1975. Methods of assessing aquatic primary productivity. p. 19–53. In Primary Productivity of the Biosphere. Lieth, H. and Whittaker, R.H. (eds). Springer Verlag. New York, NY, USA.Google Scholar
  16. Hans, F., C. Sáiz-Jiménez, and J. V. De Leeuw. 1987. Estudio de los sedimentos y la materia particulada de la laguna de Santa Olalla mediante pirólisis analítica. Limnetica. 3:291–298.Google Scholar
  17. Hanson, P. C., D. L. Bade, S. R. Carpenter, and T. K. Kratz. 2003. Lake metabolism: Relationships with dissolved organic carbon and phosphorous. Limnology and Oceanography 48:1112–1119.CrossRefGoogle Scholar
  18. Jeffrey, S. W. and G. F. Humphrey. 1975. New spectrophotometric equations for determining chlorophylls a, b, c 1 and c 2 in higher plants, algae and natural phytoplankton. Biochemie und Physiologie der Pflanzen 167:191–194.Google Scholar
  19. Keddy, P. A. 2000. Wetlands Ecology. Principles and Conservation. Cambridge University Press, Cambridge, UK.Google Scholar
  20. Kelly, M. G., G. M. Hornberger, and B. J. Cosby. 1974. Continuous automated measurement of rates of photosynthesis and respiration in an undisturbed river community. Limnology and Oceanography 19:305–312.Google Scholar
  21. López, T., J. Toja, and A. Gabellone. 1991. Limnological comparison of two peridunar ponds in the Doñana National Park. Archive für Hydrobiologie 120:357–378.Google Scholar
  22. Liboriussen, L. and E. Jeppesen. 2003. Temporal dynamics in epipelic, pelagic and epiphytic algal production in a clear and a turbid shallow lake. Freshwater Biology 48:418–431.CrossRefGoogle Scholar
  23. Lugo, A. E., S. Brown, and M. M. Brinson. 1990. Concepts in wetland ecology. p. 53–85. In A. E. Lugo, M. Brinson, and S. Brown (eds.) Forested Wetlands. Ecosystems of the World, 15. Elsevier, Amsterdam, The Netherlands.Google Scholar
  24. Manzano, M. 2001. Clasificación de los humedales de Doñana atendiendo a su funcionamiento hidrológico. Hidrogeología y recursos hidraúlicos XXIV:57–75.Google Scholar
  25. Margalef, R. 1974. Ecología. Ediciones Omega, Barcelona, España.Google Scholar
  26. Margalef, R. 1983. Limnología. Ediciones Omega, Barcelona, España.Google Scholar
  27. Margalef, R. 1987. Teoría y modelado de los sistemas fluctuantes. p. 31–41. In F. González Bernáldez, J. Torroja, and R. Llamas (eds.) Bases Científicas para la Protección de los Humedales en España. Real Academia de Ciencias Exactas, Físicas y Naturales, Madrid, Spain.Google Scholar
  28. Markager, S. and K. Sand-Jensen. 1989. Patterns of night-time respiration in a dense phytoplankton community under a natural light regime. Journal of Ecology 44:49–61.Google Scholar
  29. Melack, J. M. 1979. Photosynthesis and growth of Spirulina platensis in an equatorial lake (Lake Sims, Kenya). Limnology and Oceanography 24:753–760.CrossRefGoogle Scholar
  30. Mitsch, W. J. and J. G. Gosselink. 2000. Wetlands, 3rd Edition. John Wiley and Sons, Inc. New York, NY, USA.Google Scholar
  31. Mitchell, S. F. 1989. Primary production in a shallow eutrophic lake dominated alternately by phytoplankton and by submerged macrophytes. Aquatic Botany 33:101–110.CrossRefGoogle Scholar
  32. Montes, C., F. Borja, M. A. Bravo, and J. M. Moreira. 1998. Doñana. Una aproximación ecosistémica. Consejería de Medio Ambiente. Junta de Andalucía, Sevilla, Spain.Google Scholar
  33. Odum, E. P. 1971. Fundamentals of Ecology, 3rd Edition. W. B. Saunders. Philadelphia, PA, USA.Google Scholar
  34. Odum, H. T. 1956. Primary production in flowing water. Limnology and Oceanography 1:102–117.CrossRefGoogle Scholar
  35. Rast, W., V. H. Smith, and J. A. Thornton. 1989. Characteristics of eutrophication. p. 37–63. In S. O. Ryding and W. Rast. (eds.) The Control of Eutrophication of Lakes and Reservoirs. Man and the Biosphere Series. The Parthenon Publishing Group, UNESCO, Paris, France.Google Scholar
  36. Reati, G. J., M. Florín, G. J. Fernández, and C. Montes. 1997. The Laguna de Mar Chiquita (Córdoba, Argentina): a little known, secularly fluctuating, saline lake. International Journal of Salt Lake Research 5:187–219.CrossRefGoogle Scholar
  37. Robarts, R. D., D. B. Donald, and M. T. Arts. 1995. Phytoplankton primary production of three temporary northern prairie wetlands. Canadian Journal of Fisheries and Aquatic Sciences 52:897–902.CrossRefGoogle Scholar
  38. Sacks, L. A., J. S. Herman, L. F. Konikow, and A. Vela. 1992. Seasonal dynamics of groundwater-lake interactions at Doñana National Park, Spain. Journal of Hydrology 136:123–154.CrossRefGoogle Scholar
  39. Sánchez, R. M. and S. Zea. 2000. Metabolismo de nitrógeno y fósforo inorgánico disueltos en la columna de agua en una laguna costera tropical. Caribbean Journal of Science 1–2:127–140.Google Scholar
  40. Serrano, L. 1994. Daily variations in two ponds with different mixing dynamics in the Doñana National Park (SW Spain). Verhandlungen der Internationale Vereiningnug für Theoretische und Angewandte Limnologie 25:1345–1349.Google Scholar
  41. Serruya, C. 1990. Overview: an appraisal of concepts. p. 663–673. In M. Tilzer and C. Serruya (eds.) Large Lakes: Ecological Structure and Function. Springer Verlag. Berlin, Germany.Google Scholar
  42. Talling, J. F., B. R. Wood, M. V. Proper, and R. M. Baxter. 1973. The upper limit of photosynthetic productivity by phytoplankton: evidence from Ethiopian lakes. Freshwater Biology 3:53–76.CrossRefGoogle Scholar
  43. Thyssen, N. and M. Erlandsen. 1987. Reaeration of oxygen in shallow, macrophyte rich streams: II—Relationship between the reaeration rate coefficient and hydraulic properties. Internationale Revue der Gesamten Hydrobiologie 72:575–597.CrossRefGoogle Scholar
  44. Thyssen, N., M. Erlandsen, E. Jeppesen, and C. Ursin. 1987. Reaeration of oxygen in shallow, macrophyte rich streams: I—Determination of the reaeration rate coefficient. Internationale Revue der Gesamten Hydrobiologie 72:405–429.CrossRefGoogle Scholar
  45. Toja, J., T. López, and N. Gabellone. 1991. Successional changes in two dune ponds (Doñana National Park). Verhandlungen der Internationale vereiningnug für Theoretische und Angewandte Limnologie 24:1556–1559.Google Scholar
  46. Toja, J., T. López, and N. Gabellone. 1997. Limnology of the permanent dune ponds in Doñana National Park (Spain). p. 221–228. In F. García Novo, R. M. M. Crawford, and M. C. Díaz Barradas, (eds.) The Ecology and Conservation of European Dunes. Universidad de Sevilla, Sevilla, Spain.Google Scholar
  47. van Oorschot, M. M. P. 1994. Plant production, nutrient uptake and mineralization in river marginal wetlands: the impact of nutrient additions due to former land-use. p. 133–150. In W. J. Mitsch (ed.) Global Wetlands Old World and New. Elsevier, Amsterdam, The Netherlands.Google Scholar
  48. Wetzel, R. G. 2001. Limnology Lakes and River Ecosystems, 3rd Edition. Academic Press, New York, NY, USA.Google Scholar
  49. Wetzel, R. G. and G. E. Likens. 1990. Limnological Analyses, 2nd Edition. Springer-Verlag. New York, NY, USA.Google Scholar
  50. Whittaker, R. H., G. E. Likens, and H. Lieth. 1975. Introduction to primary productivity of the biosphere. p. 3–5. In H. Lieth and R. H. Whittaker (eds.) Primary Productivity of the Biosphere. Springer-Verlag, Berlin, Germany.Google Scholar
  51. Zar, J. H. 1996. Biostatistical Analysis, 3rd Edition. Prentice Hall International Editions, Upper Saddle River, NJ, USA.Google Scholar

Copyright information

© Society of Wetland Scientists 2004

Authors and Affiliations

  • Ana I. López-Archilla
    • 1
    Email author
  • Salvador Mollá
    • 1
  • María C. Coleto
    • 1
  • María C. Guerrero
    • 1
  • Carlos Montes
    • 1
  1. 1.Departamento Interuniversitario de EcologíaUniversidad Autónoma de MadridMadridSpain

Personalised recommendations