Advertisement

Wetlands

, Volume 22, Issue 3, pp 528–540 | Cite as

Geochemistry of water and ground water in the Nhecolândia, Pantanal of Mato Grosso, Brazil: variability and associated processes

  • Laurent BarbiéroEmail author
  • José P. de Queiroz Neto
  • Gilles Ciornei
  • Arnaldo Y. Sakamoto
  • Benjamin Capellari
  • Erminio Fernandes
  • Vincent Valles

Abstract

A distinctive feature of the Nhecolândia, a sub-region of the Pantanal wetland in Brazil, is the presence of both saline and freshwater lakes. Saline lakes used to be attributed to a past arid phase during the Pleistocene. However, recent studies have shown that saline and fresh water lakes are linked by a continuous water table, indicating that saline water could come from a contemporary concentration process. This concentration process could also be responsible for the large chemical variability of the waters observed in the area. A regional water sampling has been conducted in surface and sub-surface water and the water table, and the results of the geochemical and statistical analysis are presented. Based on sodium contents, the concentration shows a 1: 4443 ratio. All the samples belong to the same chemical family and evolve in a sodic alkaline manner. Calcite or magnesian calcite precipitates very early in the process of concentration, probably followed by the precipitation of magnesian silicates. The most concentrated solutions remain under-saturated with respect to the sodium carbonate salt, even if this equilibrium is likely reached around the saline lakes. Apparently, significant amounts of sulfate and chloride are lost simultaneously from the solutions, and this cannot be explained solely by evaporative concentration. This could be attributed to the sorption on reduced minerals in a green sub-surface horizon in the “cordilhieria” areas. In the saline lakes, low potassium, phosphate, magnesium, and sulfate are attributed to algal blooms. Under the influence of evaporation, the concentration of solutions and associated chemical precipitations are identified as the main factors responsible for the geochemical variability in this environment (about 92% of the variance). Therefore, the saline lakes of Nhecolândia have to be managed as landscape units in equilibrium with the present water flows and not inherited from a past arid phase. In order to elaborate hydrochemical tracers for a quantitative estimation of water flows, three points have to be investigated more precisely: (1) the quantification of magnesium involved in the Mg-calcite precipitation; (2) the identification of the precise stoichiometry of the Mg-silicate; and (3) the verification of the loss of chloride and sulfate by sorption onto labile iron minerals.

Key Words

concentration alkalinity calcite saline lakes Nhecolândia Pantanal Brazil 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Ab’Saber, A. N. 1988. O Pantanal Mato Grossense e a teoria dos refugios. Revista Brasileira de Geografia 50 special 1–2:9–57.Google Scholar
  2. Alho, C. J. R., T. E. Lacher, and H. C. Gonçalves. 1988. Environmental degradation in the Pantanal ecosysthem. Bioscience 38: 164–171.CrossRefGoogle Scholar
  3. Almeida, F. F. M. and M. A. Lima. 1956. Excursion Guidebook 1.18th International Geography Congress, Rio de Janeiro, Brazil.Google Scholar
  4. Brum, P. A. R. and J. C. Souza. 1985. Niveis de nutrientes minerais para gado, em lagoas no Pantanal Sul Mato-Grossense. Pesquisa Agropecuária Brasileira 20:1451–1454.Google Scholar
  5. Cunha, J. 1943. Análise química das águas. Cobre do Jauru: lagoas alcalinas do Pantanal. Boletim do Laboratório de Produção Mineira 6:18–19.Google Scholar
  6. Charlot, G. 1961. Dosage Colorimétrique des Eléments Minéraux. Principes et Méthodes. Deuxième édition, Masson, Paris, France.Google Scholar
  7. Bourrié, G., F. Trolard, J. M. R. Génin, A. Jaffrezic, V. Maître, and M. Abdelmoula. 1999. Iron control by equilibria between hydroxy-Green Rusts and solutions in Hydromorphic soils. Geochimica et Cosmochimica Acta 63:3417–3427.CrossRefGoogle Scholar
  8. Colinvaux, P. A., P. E. Oliveira, and M. B. Bush. 2000. Amazonian and neotropical plant communities on glacial time-scales. The failure of the aridity and refuge hypotheses. Quaternary Science Reviews 19:141–169.CrossRefGoogle Scholar
  9. Comastri, J. A. and A. Pott. 1998. Forage species introduction and evaluationon semicleared ancient levees in the Nhecolandia subregion of the Brazilian Pantanal. Pesquisa Agropecuaria Brasileira 33:793–802.Google Scholar
  10. Da Silva, J. D. and M. D. Abdon. 1998. Delimitation of the Brazilian Pantanal and its subregions. Pesquisa Agropecuaria Brasileria 33: 1703–1711.Google Scholar
  11. Droubi, A. Al, B. Fritz, J. Y. Gac, and Y. Tardy. 1980. Generalized residual alkalinity concept; Application to prediction of the chemical evolution of natural waters by evaporation. American Journal of Science 280:560–572.Google Scholar
  12. Eaton, F. M. 1950. Signifiance of carbonates in irrigation waters. Soil Science 69:123–133.CrossRefGoogle Scholar
  13. Eiten, G. 1983. Classificação da vegetação do Brasil. CNPq/Coordonação editorial, Brasilia, Brazil.Google Scholar
  14. Fassel, V. A. 1978. Quantitative elemental analysis by plasma emission spectroscopy. Science 202:183.CrossRefPubMedGoogle Scholar
  15. Fernandes, E., A. Y. Sakamoto, J. P. Queiroz Neto, H. M. Lucati, and B. Capellari. 1999. Le Pantanal da Nhecolândia» Mato Grosso. Cadre physique et dynamique hydrologique. Geografia Fisica e Dinâmica Quaternária 22:13–21.Google Scholar
  16. Gac, J. Y., A. Al Droubi, B. Fritz, and Y. Tardy. 1977a. Geochemical behaviour of silica and magnesium during the evaporation of waters in Chad. Chemical Geology 19:215–228.CrossRefGoogle Scholar
  17. Gac, J. Y., D. Badaut, A. Al Droubi, and Y. Tardy. 1977b. Comportement du calcium, du magnesium et de la silice en solution. Précipitation de calcite magnésienne, de silice amorphe et de silicates magnésiens au cours de l’évaporation des eaux du Chari (Tchad). Sciences Géologiques Bulletin 31:185–193.Google Scholar
  18. Garrels, R. M. and F. T. Mackenzie. 1967. Origin of the chemical composition of some springs and lakes, in Gould R. R. ed., Equilibrium concepts in natural water Systems. Advances in Chemistry Series 67:222–242.Google Scholar
  19. Gottgens, J. F., R. H. Fortney, J. Meyer, J. E. Perry, and B. E. Rood. 1998. The case of the Paraguay-Paraná waterway (“Hidrovia”) and its impact on the Pantanal of Brazil: a summary report to the Society of Wetlands Scientists. Wetlands Bulletin: 12–18.Google Scholar
  20. Gran, G. 1952. Determination of the equivalence point in potentiometric titrations. Acta Chemica Scandinavica 4:559–577.CrossRefGoogle Scholar
  21. Hamilton, S. K., O. Corrêa de Souza, and M. E. Coutinho. 1998. Dynamic of floodplain inondation in the alluvial fan of the Taquari River (Pantanal, Brazil). Verhandlungen der Internationale Vereinigung für theoretische und angewandte Limnologie 26:916–922.Google Scholar
  22. Hamilton, S. K. 1999. Potential effects of a major navigation project (Paraguay-Parana hidrovia) on inundation in the Pantanal floodplains. Regulated Rivers: Research & Management 15:289–299.CrossRefGoogle Scholar
  23. Hardie, L. A. and H. P. Eugster. 1970. The evolution of close basin brines. Mineralogical Society of America Special Paper 3:273–290.Google Scholar
  24. IBGE. 1989. Geography of Brazil. V. 1. IBGE Found. Rio de Janeiro, Brazil.Google Scholar
  25. Jones, B. F., H. P. Eugster, and S. L. Rettig. 1977. Hydrochemistry of the lake Magadi basin, Kenya. Geochimica et Cosmochimica Acta 41:53–72.CrossRefGoogle Scholar
  26. Jones, B. F. and E. Galan. 1988. Palygorskite-sépiolite. An Hydrous phyllosilicates exclusive of Micas. Geological Society of America Reviews in Mineralogy 19:631–674.Google Scholar
  27. Keller, C., G. Bourrié, and J. C. Védy. 1987. Formes de l’alcalinité dans les eaux gravitaires. Influence des métaux lourds contenus dans des composts. Sciences du Sol 25:17–29.Google Scholar
  28. Klammer, G. 1982. Die Palaeowuste des Pantanal von Mato Grosso und die pleistozane Klimageschichte des brasilianischen Randtropen. Zeitschrift für Geomorphologie 26:393–416.Google Scholar
  29. Morrison, R. I. G., M. Manore, R. K. Ross, and C. R. Padovani. 2000. Identificação das lagoas salinas da região da Nhecolândia—Pantanal, através de técnicas de sensoriamento remoto—III Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal, Corumbá-MS, (Resumo):88–89.Google Scholar
  30. Mourão, G. M. de, T. H. Ishii, and Z. M. S. Campos. 1988. Alguns factores limnológicos relacionados com a íchtiofauna de baías e salinas do pantanal da Nhecolândia, Mato Grosso do sul, Brasil. Acta Limnologica Brasiliensia 2:181–198.Google Scholar
  31. Ponnamperuma, F. N. 1967. The chemistry of submerged soils. Advance in Agronomy 24:173–189.Google Scholar
  32. Ponnamperuma, F. N., E. M. Tianco, and T. Loy. 1972. Redox equilibria in flooded soils I. The iron hydroxyde systems. Soil Science 103:374–381.CrossRefGoogle Scholar
  33. Por, F. D. 1995. The Pantanal of Mato Grosso (Brazil). World’s Largest Wetlands. Kluwer Academic Publisher, Monographiae Biologicae 73, Dordrecht/Boston/London.Google Scholar
  34. Queiroz Neto, J. P., A. Y. Sakamoto, H. M. Lucati, and E. Fernandes. 1999. Dinâmica hídrica de uma lagoa salina e seu entorno na área do Leque, Nhecolândia, Pantanal—MS. II Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal. Corumbá, 18 a 22 novembro de 1996:144–149.Google Scholar
  35. Sakamoto, A. Y. 1997. Dinâmica hídrica em uma lagoa salina e seu entorno no Pantanal da Nhecolândia: contribuição ao estudo das relações entre o meio fisico e a ocupação, Fazenda São Miguel do Firme, MS. Ph.D. Thesis. University Sao Paulo, Sao Paulo, Brazil.Google Scholar
  36. Sakamoto, A. Y., J. P. Queiroz Neto, E. Fernandes, H. M. Lucati, and B. Capellari. 1999. Topografia de lagoas salinas e seus entornos no Pantanal de Nhecolândia. II Simpósio sobre Recursos Naturais e Sócio-econômicos do Pantanal. Corumbá, 18 a 22 novembro de 1996:127–135.Google Scholar
  37. Scatchard, G. 1936. Concentrated solutions of strong electrolytes, Chemical Research 19:309.Google Scholar
  38. Stumm, W. and J. J. Morgan. 1970. Aquatic Chemistry. An Introduction Emphasing Chemical Equilibria in Natural Waters. Wiley Interscience, New York, NY, USA.Google Scholar
  39. Tricart, J. 1982. El Pantanal: Un ejemplo del impacto de la Geomorphologia sobre el medio ambiente. Geografia 7:37–50.Google Scholar
  40. Trolard, F., J. M. R. Génin, M. Abdelmoula, G. Bourrié, B. Humbert, and A. Herbillon. 1997. Identification of a Green Rust mineral in a reductomorphic soil by Mössbauer and Raman spectroscopies. Geochimica et Cosmochimica Acta 61:1107–1111.CrossRefGoogle Scholar
  41. Vallès, V. and F. Bourgeat. 1988. Geochemical determination of the gypsym requirement of cultivated sodic soils. I. Development of the thermodynamic model gypsol» simulating the irrigation watersoil chemical interactions. Arid Soil Research and Rehabilitation 2:165–177.Google Scholar
  42. Vallès, V., M. K. N’Diaye, A. Bernadac, and Y. Tardy. 1989. Geochemistry of water in the Kouroumari region, Mali. Al, Si and Mg in water concentrated by evaporation: development of a model. Arid Soil Research and Rehabilitation 3:21–39.Google Scholar
  43. Vallès, V. and A. M. De Cockeborne. 1992. Elaboration d’un logiciel de géochimie appliqué à l’étude de la qualité des eaux. Colloque “altération et restauration de la qualité des eaux continentales”, Port Leucate, 1 et 2 Oct. 1992:27–30.Google Scholar
  44. Van Beek, C. G. E. and N. van Breemen. 1973. The alkalinity of alkali soils. The Journal of Soil Science 24:129–136.CrossRefGoogle Scholar
  45. Vorob’yeva, A. and S. P. Zamana. 1984. The nature of soil alkalinity and methods of determining it. Pochvovedeniye 3:134–139.Google Scholar
  46. Wilhelmy, M. 1958. Das Grosse Pantanal. Die Weltumschau 18:555–559.Google Scholar

Copyright information

© Society of Wetland Scientists 2002

Authors and Affiliations

  • Laurent Barbiéro
    • 1
    Email author
  • José P. de Queiroz Neto
    • 2
  • Gilles Ciornei
    • 3
  • Arnaldo Y. Sakamoto
    • 4
  • Benjamin Capellari
    • 2
  • Erminio Fernandes
    • 2
  • Vincent Valles
    • 5
  1. 1.Department of MetallurgyIRD-CEFORSE Indian Institute of ScienceBangaloreIndia
  2. 2.Departamento de GeografiaUniversidade de São PauloSão PauloBrazil
  3. 3.IRD Centre de HannDakarSenegal
  4. 4.UFMS—Campus de Trés LagoasTrés Lagoas-MSBrazil
  5. 5.Laboratoire Chimie et Environnement, Case 29Université de Provence (Aix-Marseille I)Marseille Cedex 03France

Personalised recommendations