, Volume 22, Issue 2, pp 214–224 | Cite as

Close correlation between the nitrate elimination rate by denitrification and the organic matter content in hardwood forest soils of the Upper Rhine floodplain (France)

  • Ingrid BrettarEmail author
  • Manfred G. Höfle


Denitrification is a major process for reducing the nitrogen load in floodplains. Soil samples from depth profiles of a hardwood forest of the floodplain of the Upper Rhine were analyzed for their potential to denitrify under permanent nitrate supply. The soils were silty to silty-clayey in the surface layer and had increasing sand content with depth. The rate of denitrification was greatest in top soil and decreased with depth. Organic matter content along profiles decreased exponentially with depth. The denitrification rate showed a very close correlation with the organic matter content of the hardwood forest soil. A denitrification rate of 0.57 mg N day−1 g−1 organic matter present in the soil was calculated for all depths and sites and was constant for up to 23 days. This rather straightforward relationship may support predictions of the (maximum) potential denitrification rates in situ. Furthermore, this relationship may support modeling of the nitrogen balance and contribute to an efficient flood management strategy for the restored floodplains of the Upper Rhine in order to support nitrate removal by denitrification.

Key Words

hardwood forest organic matter denitrification rate Upper Rhine floodplain 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  1. Alvarez, C. R., R. Alvarez, M. S. Grigera, and R. S. Lavado. 1998. Associations between organic matter fractions and the active soil microbial biomass. Soil Biology and Biochemistry 30:767–773.CrossRefGoogle Scholar
  2. Ball, D. F. 1964. Loss on ignition as an estimate of organic matter and organic carbon in non-calcareous soils. Journal of Soil Science 15:84–92.CrossRefGoogle Scholar
  3. Behrendt, H. 1999. Nährstoffbilanzen der Flu\gebiete Deutschlands. Texte, UBA 75/99, Berlin, Germany.Google Scholar
  4. Bradley, P. M., M. Fernandez, and F. H. Chapelle. 1992. Carbon limitation of denitrification rates in an anaerobic ground water system. Environmental Science and Technology 26:2377–2381.CrossRefGoogle Scholar
  5. Brettar, I. and G. Rheinheimer. 1992. Influence of carbon availability on denitrification in the central Baltic Sea. Limnology and Oceanography 37:1146–1163.Google Scholar
  6. Brettar, I., J. M. Sanchez-Perez, J. Kern, M. Trémolières, and H. Rennenberg. 1998. Stickstoffretention in Auen wäldern des Oberrheins. p. 647–651. In Tagungsberichte der Deutschen Gesellschaft für Limnologie, Tagung 1997 in Frankfurth a.M., DGL, Krefeld, Germany.Google Scholar
  7. Brettar, I., J. M. Sanchez-Perez, and M. Trémolières. 2000. Auen und Polder als Stickstoffsenken: Redoxydynamik in Auenwaldböden des Oberrheins, p. 439–443. In Tagungsberichte der Deutschen Gesellschaft für Limnologie, Tagung 1999 in Rostock, DGL, Tutzing, Germany.Google Scholar
  8. Brettar, I., J. M. Sanchez-Perez and M. Trémolières. 2001. Auen und Polder am Oberrhein: Redoxpotentialmessungen bei Flutungen zur Unterstüzung der Optimierung von Stickstoffelimination gen zur Unterstüzung der Optimierung von Stickstoffelimination und Auenwaldrenaturierung. p. 332–336. In Tagungsberichte der Deutschen Gesellschaft für Limnologie, Tagung 2000 in Magdeburg, DGL, Tutzing, Germany.Google Scholar
  9. Brinson, M. M., H. D. Bradshaw, and E. S. Kane. 1984. Nutrient assimilative capacity of an alluvial floodplain swamp. Journal of Applied Ecology 21:1041–1057.CrossRefGoogle Scholar
  10. Boustany, R. G., C. R. Crozier, J. M. Rybczyk, and R. R. Twilley. 1997. Denitrification in a South Louisiana wetland forest receiving treated sewage effluent. Wetlands Ecology and Management 4: 273–283.CrossRefGoogle Scholar
  11. Burford, J. R. and J. M. Bremner. 1975. Relationships between the denitrification capacities of soil and total, water soluble and readily decomposable soil organic matter. Soil Biology and Biochemistry 7:389–394.CrossRefGoogle Scholar
  12. Caraco, N. and J. J. Cole. 1999. Human impact on nitrate export: an analysis using major world rivers. Ambio 28:167–170.Google Scholar
  13. Colbourn, P. 1993. Limits to denitrification in two pasture soils in a temperate maritime climate. Agriculture Ecosystems and Environment 43:49–68.CrossRefGoogle Scholar
  14. Culbertson, C. W., A. J. B. Zehnder and R. S. Oremland. 1981. Anaerobic oxidation of acetylene by estuarine sediments and enrichment cultures. Applied and Environmental Microbiology 41: 396–403.PubMedGoogle Scholar
  15. Davidson, T. E. and L. G. Leonardson. 1996. Effects of nitrate and organic carbon additions on denitrification in two artificially flooded soils. Ecological Engineering 7:139–149.CrossRefGoogle Scholar
  16. Davies, B. E. 1974. Loss on ignition as an estimate of soil organic matter. Soil Science Society of America Proceedings 38:150–151.Google Scholar
  17. DeLaune, R. D., R. R. Boar, C. W. Lindau, and B. A. Kleiss. 1996. Denitrification in bottomland hardwood wetland soils of the Cache River. Wetlands 16:309–320.CrossRefGoogle Scholar
  18. Dister, E. 1991. La maîtrise des crues par la renaturation des plaines alluviales du Rhin supérieur. Bulletin de la Société Industrielle de Mulhouse 824:73–82.Google Scholar
  19. Ettema, C. H., R. Lowrance, and D. C. Coleman. 1999. Riparian response to surface nitrogen input: temporal changes in denitrification, labile and microbial C and N-pools, and bacterial and fungal respiration. Soil Biology and Biochemistry 31:1609–1624.CrossRefGoogle Scholar
  20. Faulkner, S. P., W. H. Patrick, and R. P. Gambrell. 1989. Field techniques for measuring wetland soil parameters. Soil Science Society of America Journal 53:883–890.CrossRefGoogle Scholar
  21. Fernandez, I., A. Cabaneiro, and T. Carballas. 1997. Organic matter changes immediately after a wildfire in an Atlantic forest soil and comparison with laboratory soil heating. Soil Biology and Biochemistry 29:1–11.CrossRefGoogle Scholar
  22. Grasshoff, K., M. Ehrhardt, and K. Kremling. 1983. Methods of Seawater Analysis. Verlag Chemie Weinheim, New York, NY, USA.Google Scholar
  23. Hart, S. C., G. E. Neason, D. D. Myrold, and D. A. Perry. 1994. Dynamics of gross nitrogen transformations in an old-growth forest: the carbon connection. Ecology 75:880–891.CrossRefGoogle Scholar
  24. Haycock, N. E., G. Pinay, and C. Walker. 1993. Nitrogen in river corridors: European perspective. Ambio 22:340–346.Google Scholar
  25. IFARE (Institut Franco-Allemande sur la Recherche Ecologique). 1998. La recherche aujourd’hui pour mieux agir demain. IFARE, Strasbourg, France.Google Scholar
  26. Lockaby, B. G. and M. R. Walbridge. 1998. Biogeochemistry. p. 149–172. In M. G. Messina and W. H. Conner (eds.) Southern Forested Wetlands: Ecology and Management. Lewis, Boca Raton, FL, USA.Google Scholar
  27. Lowrance, R. R., R. Todd, J. Fail, O. Hendrickson, R. Leonard, and L. Asmussen. 1984. Riparian filters as nutrient filters in agricultural watersheds. Bioscience 34:374–377.CrossRefGoogle Scholar
  28. Lowrance, R. R. 1992. Ground water nitrate and denitrification in a coastal plain riparian forest. Journal of Environmental Quality 21: 401–405.CrossRefGoogle Scholar
  29. Ministerium für Umwelt und Verkehr Baden-Württemberg. 1996. Rahmenkonzept des Landes Baden-Württemberg zur Umsetzung des Integrierten Rheinprogrammes, Materialien Integriertes Rheinprogramm 7, Ministerium für Umwelt und Verkehr, Stuttgart, Germany.Google Scholar
  30. McCarthy, G. W. and J. M. Bremner. 1992. Availability of organic carbon for denitrification of nitrate in subsoils. Biology and Fertility of Soils 14:219–222.CrossRefGoogle Scholar
  31. McInerney, M. and T. Bolger. 2000. Temperature, wetting cycles and soil texture effects on carbon and nitrogen dynamics in stabilized earthworm casts. Soil Biology and Biochemistry 32:325–349.Google Scholar
  32. Ohtonen, R. 1994. Accumulation of organic matter along a pollution gradient: application of Odum’s theory of ecosystem energetics. Microbial Ecology 27:43–55.CrossRefGoogle Scholar
  33. Ohtonen, R. and H. Vare. 1998. Vegetation composition determines microbial activity in a boreal forest soil. Microbial Ecology 36: 328–335.CrossRefPubMedGoogle Scholar
  34. Patrick, W. H., R. P. Gambrell, and S. P. Faulkner. 1996. Redox Measurements of Soils. p. 1255–1273. In Soil Science Society of America and American Society of Agronomy, Methods of Soil Analysis, Part 3. Chemical Methods—SSSA Book Series no. 5. Madison, WI, USA.Google Scholar
  35. Reichstein, M., F. Bednorz, G. Broll, and T. Kätterer. 2000. Temperature dependence of carbon mineralization: conclusions from a long-term incubation of subalpine soil samples. Soil Biology and Biochemistry 32:947–958.CrossRefGoogle Scholar
  36. Sanchez-Perez, J. M. 1992. Fonctionnement hydrochimique d’un écosystème forestier inondable de la plaine du Rhin. Ph.D. Thesis. CEREG, Université Louis Pasteur, Strasbourg, France.Google Scholar
  37. Sanchez-Perez, J. M., M. Trémolières, A. Schnitzler, B. Badre, and R. Carbiener. 1993. Nutrient content in alluvial soils submitted to flooding in the Rhine alluvial deciduous forest. Acta Oecologica 14:371–387.Google Scholar
  38. Sanchez-Perez, J. M. and M. Trémolières. 1997. Variation in nutrient levels on the ground water in the Upper Rhine alluvial forests as a consequence of hydrological regime and soil texture. Global Ecology and Biogeography Letters 6:211–217.CrossRefGoogle Scholar
  39. Sanchez-Perez, J. M., M. Trémolières, Y. Grosshans, D. Hartz, R. Hranisky, and P. Killian. 1999. Role de la zone non saturée du sol dans le transfert de nitrates vers les eaux souterraines en zone alluviale inondable. In Proceedings of the 24emes Journées scientifiques du Groupe Francophone Humidimétrie et Transfert en Milieux Poreux, GFHN, Paris, France.Google Scholar
  40. Schoolfield, R. M., P. J. H. Sharpe, and C. E. Magnuson. 1981. Nonlinear regression of biological temperature-dependent rate models based on absolute reaction theory. Journal of Theoretical Biology 88:719–731.CrossRefPubMedGoogle Scholar
  41. Schulten, H. R. and P. Leinweber. 1999. Thermal stability and composition of mineral-bound organic matter in density fractions of soil. European Journal of Soil Science 50:237–248.CrossRefGoogle Scholar
  42. Seitzinger, S. P. 1994. Linkages between organic matter mineralization and denitrification in eight riparian wetlands. Biogeochemistry 25:19–39.CrossRefGoogle Scholar
  43. Trémolières, M., I. Eglin, U. Roeck, and R. Carbiener. 1993. The exchange process between river and ground water on the central Alsace floodplain (Eastern France). I. The case of the canalised river Rhine. Hydrobiologia 254:133–148.Google Scholar
  44. Trémolières, M., J. M. Sanchez-Perez, A. Schnitzler, and D. Schmidt. 1998. Impact of river management history on the community structure, species composition and nutrient status in the Rhine alluvial hardwood forest. Plant Ecology 135:59–78.CrossRefGoogle Scholar
  45. van der Peijl, M. J. and J. T. A. Verhoeven. 1999. A model of carbon, nitrogen and phosphorus dynamics and their interactions in river marginal wetlands. Ecological Modelling 118:95–113.CrossRefGoogle Scholar
  46. Whalen, J. K., P. J. Bottomley, and D. D. Myrold. 2000. Carbon and nitrogen mineralization from light and heavy fraction additions to soil. Soil Biology and Biochemistry 32:1345–1352.CrossRefGoogle Scholar

Copyright information

© Society of Wetland Scientists 2002

Authors and Affiliations

  1. 1.Department of Environmental MicrobiologyGBF-German Center for BiotechnologyBraunschweigGermany

Personalised recommendations