Glucosinolate survey of cultivated and feral mashua (Tropaeolum tuberosum Ruíz & PavÓn) in the Cuzco region of Peru

Contenido de Glucosinolatos en mashuas (Tropaeolum tuberosum Ruiz & Pavon) cultivadas y silvestres de la region del Cusco, Peru

Abstract

Glucosinolates (GSL) present in cultivated and feral accessions of mashua (Tropaeolum tuberosum í & Pavón) were identified and quantfied by High Performance Liquid Chromatography (HPLC) analysis. The nwin glucosinolates detected were aromatic: 4—Hydroxybenzyl GSL (OHB, Glucosinalbin), Benzyl GSL (B, Glucotropaeolin), and m—Methoxybenzyl GSL (MOB, Glucolimnathin). The total amount of GSL observed ranged from 0.27 to 50.74 micromols per gram (µMol/g) of dried tuber tissue. Most of the low-content GSL accessions are distributed within the cultivated population with a total GSL concentration lower than 5.00 µMol/g of dried tuber tissue. The highest total and specific GSL (OHB, B, and MOB) contents (more than 25.00 µMol/g of dried tuber tissue) were observed in the feral population with few exceptions. in addition, only six different GSL profiles were found: Only MOB; only B; OHB and B; OHB and MOB; B and MOB; and OHB, B and MOB.

Abstract

Se identifico y cuantificó mediante “High Performance Liquid Chromatograph” los glucosinolatos (GSL) presentes en mashua cultivada (Tropaeolum tuberosum Ruíz & Pavón) y sus parientes silvestres. Los compuestos principales descubiertos fueron los siguentes glucosinolatos aromáticos: 4—Hydroxybenzyl GSL (OHB, Glucosinalbin), Benzyl GSL (B, Glucotropaeolin) y m—Methoxybenzyl GSL (MOB, Glucolimnathin). El contenido total de GSLfluctuó entre 0.27 a 50.74 µMol/g de tejido del tubérculo seco. La mayorIa de las accesiones con bajo contenido de GSL estuvieron distribuidos dentro de la población cultivada con una concentración total de GSL menor a 5.00 µMol/g de tejido del tubérculo seco, mientras que el mas alto contenido total (mds de 25.00 µMol/g de tejido del tubérculo seco) y la mas alta concentración de GSL individuales (OHB, B y MOB) se observó en Ia población silvestre con pocas excepciones. Además, seis fenotipos de GSL diferentesfueron determinados: Sólo MOB; sólo B; OHB y B; OHB y MO; B y MOB; y OHB, B y MOB.

This is a preview of subscription content, access via your institution.

Literature Cited

  1. Bones, A.M. and J.T. Rossiter. 1996. The myrosinase-glucosinolate system, its organization and biochemistry. Physiol Plant 97: 194–208.

    Article  CAS  Google Scholar 

  2. Brabban, A.D. and C. Edwards. 1995. The effects of glucosinolates and their hydrolysis products on microbial growth. J. Appl. Bacteriol. 79:171–177.

    PubMed  CAS  Google Scholar 

  3. Dini, I., G. C. Tenore, and A. Dini. 2002. Glucosinolates from Maca (Lepidium meyenii). Biochem. System Ecol. 30: 1087–1090.

    Article  CAS  Google Scholar 

  4. Fahey, J. W., A. T. Zalcmann, and P. Talley. 2001. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants. Phytochemistry 56:5–51.

    PubMed  Article  CAS  Google Scholar 

  5. Grau, A., R. Ortega, C. Nieto, and M. Hermann. 2000. Promoting the conservation and use of underutilized and neglected crops. Mashua (Tropaeolum tuberosum RuRuízz & Pavón). International Plant Genetic Resources Institute (IPGRI), Rome, Italy.

    Google Scholar 

  6. Halkier, B.A. and L. Du. 1997. The biosynthesis of glucosinolates. Trends in Plant Science 2:425–431.

    Article  Google Scholar 

  7. Halkier, B. A. 1999. Glucosinolates. Pages 193–223 in R. Ikan, ed. Naturally occurring glycosides: Chemistry, distribution and biological properties. John Wiley, New York.

    Google Scholar 

  8. Hernandez, J. E. and J. León, eds. 1994. Neglected crops: 1492 from a different perspective. Food and Agriculture Organization of the United Nations (FAO) Plant Production and Protection Series, no. 26. FAO in collaboration with the Botanical Garden of Córdoba (Spain) as part of the Etnobotánica 92 Programme (Andalusia, 1992)], Rome.

  9. Herrera, F. 1941. Sinopsis de la flora del Cuzco. Parte Sistemática. Lima, Peru.

    Google Scholar 

  10. Johns, T. 1981. The aflu and the maca. Journal of Ethnobiology. 1:208–212.

    Google Scholar 

  11. Johns, T. and G.H.N. Towers. 1981. Isothiocyanates and thioureas in enzyme hydrolysates of Tropaeolum tuberosum. Phytochemistry 20:2687–2689.

    Article  CAS  Google Scholar 

  12. Johns, T., W. D. Kitts, F. Newsome, and G. H. N. Towers. 1982. Anti-reproductive and other medicinal effects of Tropaeolum tuberosum. Journal of Ethnopharmacology 5:149–161.

    PubMed  Article  CAS  Google Scholar 

  13. Kjær, A., M. Øgaard, and Y. Maeda. 1978. Seed volatiles within the family Tropaeolaceae. Phytochemistry 17:1285–1287.

    Article  Google Scholar 

  14. Kraling, K., G. Röbbelen, W. Thies, M. Herrmann, and R. Ahmadi. 1990. Variation of seed glucosinolates in lines of Brassica napus. Plant Breed 105: 33–39.

    Article  Google Scholar 

  15. Lambrix, V., M. Reichelt, T. Mitchell-Olds, D. J. Kliebenstein, and J. Gershenzon. 2001. The Arabidopsis Epithiospecifier Protein Promotes the Hydrolysis of Glucosinolates to nitriles and Influences Trichoplusia ni Herbivory. The Plant Cell 13:2793–2807.

    PubMed  Article  CAS  Google Scholar 

  16. Leon, Jorge. 1964. Plantas Alimenticias Andinas. Lima: Instituto Interamericano de Ciencias Agricolas Zona Andina. Boletin Tecnico No. 6. Lima: Instituto Interamericano de Ciencias Agricolas Zona Andino.

  17. Li, G., U. Ammermann, and C. F. Quiros. 2001. Glucosinolate contents in maca (Lepidium peruvianum Chacon) seeds, sprouts, mature plants and several derived commercial products. Econ. Bot. 55:255–262.

    CAS  Google Scholar 

  18. Lykkesfeldt, J. and B. L. Möller. 1993. The synthesis of benzylglucosinolate in Tropaeolum majus: isothiocyanates as potent enzyme inhibitors. Plant Physiol. 102: 609–613.

    PubMed  CAS  Google Scholar 

  19. Mithen, R. 2001. Glucosinolates: Biochemistry, Genetics and Biological Activity. Plant Growth Regulation 34:91–103.

    Article  CAS  Google Scholar 

  20. National Research Council (NRC). 1989. Lost crops of the Incas: Little known plants of the Andes with promise for worldwide cultivation. National Academy Press, Washington, D.C.

    Google Scholar 

  21. Ortega, O. R. 2000. Estudio de la diversidad genética de añu no cultivado (Tropaeolum spp.) en el Departamento del Cusco. Tésis Ing. Agr., Universidad Nacional de San Antonio Abad del Cusco, Peru.

    Google Scholar 

  22. - 2005. Inventory of genetic variability and glucosinolate determination in mashua (Tropaeolum tuberosum). Thesis. M.Sc. Agronomy and Horticulture. University of California Davis.

  23. Piacente, S., V. Carbone, A. Plaza, A. Zampelli, and C. Pizza. 2002. Investigation of the tuber constituents of maca (Lepidium meyenii Walp). Journal Agric Food Chem. 50: 5621–5625.

    Article  CAS  Google Scholar 

  24. Ramallo, R., J.P. Wathelet, E. Le Boulenge, E. Torres, M. Marlier, J. F. Ledent, A. Guidi, and Y. Larondelle. 2004. Glucosinolates in isaño (Tropaeolum tuberosum) tubers: Qualitative and quantitative content and changes after maturity. Journal of the Science of Food and Agriculture. 84(7): 701–706.

    Article  CAS  Google Scholar 

  25. Robbelen, G., R. K. Downey, and A. Ashri. 1989. Oil crops of the world: Their breeding and utilization. McGraw-Hill, New York.

    Google Scholar 

  26. Rosa, E. A. S., R. Heaney, G. Fenwick, and C. Portas. 1997. Glucosinolates in crop plants. Horticultural Reviews. 19:99–215.

    CAS  Google Scholar 

  27. Ruíz, H. and J. Pavón. 1802. Flora peruviana et chilensis 3:76–77.

    Google Scholar 

  28. Shapiro, T. A., J. W. Fahey, K. L. Wade, K. K. Stephenson, and F. Talalay. 1998. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables. Cancer Epidemiol. Biomarkers Prey. 7:1091–1100.

    CAS  Google Scholar 

  29. Sparre B. 1973. Tropaeolaceae. Opera Botanica Ser. B No. 2 in Harling, G. and B. Sparre, eds. Flora of Ecuador. Systematic Botany, Goteborg University, and the Section for Botany, Riksmuseum, Stockholm, in co-operation with Pontificia Universidad Católica del Ecuador, Quito. Goteborg, Sweden.

  30. Sparre, B. and L. Andersson. 1991. A taxonomic revision of the Tropaeolaceae. Opera Botanica, No. 108. Copenhagen, Denmark.

  31. Stoner, G. D. and M. A. Morse. 1997. Isothiocyanates and plant polyphenols as inhibitors of lung and esophageal cancer. Cancer Lett., 114:113–119.

    PubMed  Article  CAS  Google Scholar 

  32. Sugie, S., K. Okamoto, A. Okumura, T. Tanaka, and H. Mori. 1994. Inhibitory effects of benzyl thiocyanate and benzyl isothiocyanate on methyla zoxymethanol acetate-induced intestinal carcinogenesis in rats. Carcinogenesis 15:1555–1560.

    PubMed  Article  CAS  Google Scholar 

  33. Wang, Q., C.D. Grubb, and S. Abel. 2002. Direct analysis of single leaf disks for chemopreventive glucosinolates. Phytochem Analysis 13:152–157.

    Article  CAS  Google Scholar 

  34. Wattenberg, L. W. 1987. Inhibitory effects of benzyl isothiocyanate administered shortly before diethylnitrosamine or benzo[a]pyrene on pulmonary and forestomach neoplasia in A/J mice. Carcinogenesis 8:1971–1973.

    PubMed  Article  CAS  Google Scholar 

  35. — 1992. Chemoprevention of cancer by naturally occurring and synthetic compounds. Pages 19–40 in L. W. Wattenberg, M. Lipkin, C. W. Boone, and G. J. Kelloff, eds. Cancer Chemoprevention. CRC Press, Boca Raton, FL.

    Google Scholar 

  36. Wielanek, M. 1999. Glucotropaeolin and myrosinase production in hair root cultures of Tropaeolum majus. Plant Cell, Tissue and Organ Cult. 57(1):39–45.

    Article  CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Oscar R. Ortega or Daniel J. Kliebenstein or Carlos Arbizu or Ramiro Ortega or Carlos F. Quiros.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ortega, O.R., Kliebenstein, D.J., Arbizu, C. et al. Glucosinolate survey of cultivated and feral mashua (Tropaeolum tuberosum Ruíz & PavÓn) in the Cuzco region of Peru. Econ Bot 60, 254–264 (2006). https://doi.org/10.1663/0013-0001(2006)60[254:GSOCAF]2.0.CO;2

Download citation

Key words

  • Tropaeolum tuberosum
  • mashua
  • glucosinolate
  • benzyl
  • methoxybenzyl
  • anticarcinogens
  • secondary metabolites
  • Andean tuber crops
  • isothiocyanates
  • glucotropaeolin