Skip to main content
Log in

Morphometric analysis of inflorescence phytoliths produced byAvena sativa L. andAvena strigos schreb

  • Published:
Economic Botany Aims and scope Submit manuscript

Abstract

Morphometric analysis, the study of measurements of size and shape, has the potential to be an effective tool for phytolith analysis. This study reports the first attempt to apply the methodology to oats. In particular, this study was designed to determine if morphometric analysis could adequately discriminate between phytoliths produced in the inflorescence bracts of two species of oats, Avena sativa L. and Avena strigosa Schreb. Results indicate that while the taxa produce the same types of phytoliths, those phytoliths have significantly different measurements of size and shape. This suggests the technique has the potential to become a powerful research tool for investigators working in the wide variety of disciplines that utilize phytolith analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Aston, M. J., and M.M. Jones. 1976. A study of the transpiration surfaces ofAvena sterilis L. var. Algerian leaves using monosilicic acid as a tracer for water movement. Planta 130(2):121–9.

    Article  Google Scholar 

  • Baker, G. 1959. Hook-shaped opal phytoliths in the epidermal cells of oats. Australian Journal of Botany 8:69–74.

    Article  Google Scholar 

  • Ball, T.B., J. S. Gardner, and N. Anderson. 1999. Identifying inflorescence phytoliths from selected species of wheat (Triticum monoccum, T. dicoc-con, T. dicoccoides, andT. aestivum) and barley (Hordeum vulgare andH. spontaneum). American Journal of Botany 86(11): 1615–1623.

    Article  PubMed  Google Scholar 

  • Bennett, D.M. 1982. Silicon deposition in the roots ofHordeum sativum, Avena sativa L. andTriticum aestivum L. Annals of Botany 50(2):239–246.

    Google Scholar 

  • Berlin, A.M., T.B. Ball, R. Thompson, D. Kittleson, and S.C. Herbert. 2003. Ptolemaic agriculture, “Syrian wheat,“ andTriticum aestivum. Journal of Archaeological Science 30:115–121.

    Article  Google Scholar 

  • Dennell, R.W. 1992. The origins of agriculture in Europe. Pages 71–100 in C. Wesley Cowan and Patty Jo Watson, eds. The origins of agriculture: An international perspective. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Harlan, J.R. 1992. Indigenous African agriculture. Pages 59–70 in C. Wesley Cowan and Patty Jo Watson, eds. The origins of agriculture: An inter-national perspective. Smithsonian Institution Press, Washington, D.C.

    Google Scholar 

  • Hodson, M.J., P.J. White, A. Mead, and M.R. Broadley. (Accepted, n.d.). Phylogenetic variation in the silicon composition of plants. Annals of Botany.

  • Jones, L.H.P., A. A. Milne, and S.M. Wadham. 1963. Studies of silica in the oat plant II. Distribution of the silica in the plant. Plant and Soil 18(3):358–371.

    Article  CAS  Google Scholar 

  • — and K. A. Handreck. 1965. Studies of silica in the oat plant III. Uptake of silica from soils by the plant. Plant and Soil 23(1):79–96.

    Article  CAS  Google Scholar 

  • Kaplan, L., M.B. Smith, and L.A. Sneddon. 1992. Cereal grain phytoliths of Southwest Asia and Europe. Pages 149–174 in G. Rapp and S.C. Mulholland, eds. Phytolith systematics. Plenum Press, New York and London.

    Google Scholar 

  • Kaufman, P.B., W.C. Bigelow, L.B. Petering, and F.B. Drogosz. 1969. Silica in developing epider mis cells ofAvena internodes: Electron micro-probe analysis. Science 166:1015–1017.

    Article  Google Scholar 

  • Madella, M., A. Alexandre, and T. Ball. 2005. Inter national code for phytolith nomenclature 1.0. An nals of Botany 10.1093/aob/mcil72.

  • Pearsall, D.M., D.R. Piperno, E.H. Dinan, M. Um-lauf, Z. Zhao, and R. A. Benefer, Jr. 1995. Distinguishing rice (Oryza sativa Poaceae) from wildOryza species through phytolith analysis: Results of preliminary research. Economic Botany 49:183–196.

    Google Scholar 

  • Soni, S.L., P.B. Kaufman, and W.C. Bigelow. 1971. Electron microprobe analysis of the distribution of silicon in leaf epidermal cells of the oat plant. Phytomorphology 20:350–363.

    Google Scholar 

  • —, P.B. Kaufman, and W.C. Bigelow. 1972. Regulation of silicon deposition inAvena inter-nodal epidermis by gibberellic acid and sucrose. Journal of Experimental Botany 23(76):787–791.

    Article  CAS  Google Scholar 

  • Weibul, J., L.L.J. Bojesen, and V. Rasomavièvius. 2002.Avena strigosa in Denmark and Lithuania: Prospects for in situ conservation. Plant Genetic Resources Newsletter 131:1–6.

    Google Scholar 

  • Zhao, Z., D.M. Pearsall, A.B. Benefe, Jr., and D.R. Piperno. 1998. Distinguishing rice (Oryza sativa Poaceae) from wildOryza species through phy-tolith analysis, II: Finalized method. Economic Botany 52:134–135.

    Google Scholar 

  • Zhou, X., E.N. Jellen, and J.P. Murphy. 1999. Pro-genitor germplasm of domesticated hexaploid oat. Crop Science 39(4):1208–1214.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marta Portillo or Terry Ball.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Portillo, M., Ball, T. & Manwaring, J. Morphometric analysis of inflorescence phytoliths produced byAvena sativa L. andAvena strigos schreb. Econ Bot 60, 121–129 (2006). https://doi.org/10.1663/0013-0001(2006)60[121:MAOIPP]2.0.CO;2

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1663/0013-0001(2006)60[121:MAOIPP]2.0.CO;2

Key Words

Navigation