Advertisement

The Botanical Review

, 68:128 | Cite as

Biogeography of theOxalis tuberosa alliance

  • Eve Emshwiller

Abstract

TheOxalis tuberosa alliance is a group of morphologically similarOxalis species allied to the Andean tuber crop oca,O. tuberosa. Originally described by cytologists as a dozen species sharing a base chromosome number rare inOxalis (x = 8), the alliance as defined here includes additional species for which cytological information is not yet available but which are supported as members on molecular and/or morphological grounds. The alliance includes members found in the Andean region from Venezuela to northern Argentina, with one species at high elevations in Central America. They occur from the high Andean steppes (páramo and puna) to the cloud forests of middle elevations and include both restricted endemics and variable widespread species complexes.

Geographical and altitudinal distributions of members of the alliance and selectedOxalis species outside the alliance were compared with a combined phylogenetic analysis of DNA sequence data of ITS and ncpGS (chloroplast-expressed glutamine synthetase). Groups within the alliance (i.e., major clades on the molecular trees) occur across widespread, overlapping regions in the Andes, with only partial ecological separation. The hypothesis that theO. tuberosa alliance may have developed in the Andes of southern Peru and northwestern Bolivia and radiated southward and, especially, northward along the Andean axis is suggested by patterns of distributions of members of the alliance and outgroups. In spite of uncertain species delimitations, it is clear that the alliance includes many endemic species and ecotypes that have very restricted distributions. As relatives of the Andean tuber cropOxalis tuberosa, the genetic diversity represented by this geographical variability should be a high priority for conservation.

Keywords

Internal Transcribe Space Botanical Review Cloud Forest Oxalis Base Chromosome Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Resumen

La alianzaOxalis tuberosa es un grupo de especies deOxalis morfológicamente similares aliadas a la “oca,”O. tuberosa, un tubérculo andino. La alianza fue descrita originalmente por citólogos como una docena de especies que comparten un número cromosómico básico raro enOxalis (x = 8), pero en este artículo la defmición incluye especies adicionales cuya información citológica aún no existe pero cuya inclusión como miembros está bien apoyada por aspectos moleculares y/o morfológicos. La alianza incluye a miembros que se encuentran en la región andina desde Venezuela hasta el norte de Argentina, con una especie en las elevaciones altas en America Central. Se encuentra desde páramos y punas en los altos Andes hasta bosques nublados en las elevaciones medias e incluye endemismos restringidos así como complejos de especies variables y con distribuciön amplia.

Se comparé la distribución geográfica y altitudinal de los miembros de la alianza y de especies seleccionadas deOxalis fuera de la alianza con un análisis filogenético combinado de datos de secuencias de ADN de ITS y de ncpGS (glutamina sintetasa de expresión cloroplasmática). Los grupos dentro de la alianza (i.e., los clados mayores en los árboles moleculares) se encuentran en regiones andinas que se traslapan, con una separación ecológica sólo parcial. Los patrones de distribución de los miembros de la alianza deO. tuberosa y los grupos externos sugieren una hipótesis de que la alianza se habría desarrollado en los Andes del sur de Perú y noroeste de Bolivia y radiado al sur y, especialmente, al norte a lo largo del eje de los Andes. Pese a la delimitación incierta de especies, es claro de que la alianza incluye a muchas especies endémicas y ecotipos que tienen distribuciones muy restringidas. Como parientes de la oca,Oxalis tuberosa, la diversidad genética representada por esta variabilidad geográfica debería ser una alta prioridad para la conservación.

Literature Cited

  1. Ayers, T. J. 1999. Biogeography ofLysipomia (Campanulaceae), a high elevation endemic: An illustration of species richness at the Huancabamba Depression, Peru. Arnaldoa 6:13–28.Google Scholar
  2. Brown, A. H. D. &C. L. Brubaker. 2000. Genetics and the conservation and use of Australian wild relatives of crops. Austral. J. Bot. 48: 297–303.CrossRefGoogle Scholar
  3. Brücher, H. 1969. Poliploidia en especies sudamericanas deOxalis. Bol. Soc. Venez. Ci. Nat. 28: 145–178.Google Scholar
  4. Burnham, R. J. &A. Graham. 1999. The history of neotropical vegetation: New developments and status. Ann. Missouri Bot. Gard. 86: 546–589.CrossRefGoogle Scholar
  5. Chardon, C. E. 1938. Apuntaciones sobre el origen de la vida en los Andes. Bol. Soc. Venez. Ci. Nat. 5: 1–47.Google Scholar
  6. Colinvaux, P. A., M. B. Bush, M. Steinitz-Kannan &M. C. Miller. 1997. Glacial and postglacial pollen records from the Ecuadorian Andes and Amazon. Quatern. Res. 48: 69–78.CrossRefGoogle Scholar
  7. De Azkue, D. 2000. Chromosome diversity of South AmericanOxalis (Oxalidaceae). J. Linn. Soc., Bot. 132: 143–152.CrossRefGoogle Scholar
  8. — &A. Martínez. 1990. Chromosome number of theOxalis tuberosa alliance (Oxalidaceae). Pl. Syst. Evol. 169: 25–29.CrossRefGoogle Scholar
  9. Debouck, D. G. &D. Libreros F. 1995. Neotropical montane forests: A fragile home of genetic resources of wild relatives of new world crops. Pp. 561–577in S. P. Churchill, H. Balslev, E. Forero & J. L. Luteyn (eds.), Biodiversity and conservation of neotropical montane forests. New York Bot. Gard., Bronx.Google Scholar
  10. Emshwiller, E. 1999a. Origins of domestication and polyploidy in the Andean tuber cropOxalis tuberosa Molina (Oxalidaceae). Ph.D. diss., Cornell University.Google Scholar
  11. — 1999b. The relationships of PeruvianOxalis species to cultivated oca. Arnaldoa 6: 117–139.Google Scholar
  12. — &J. J. Doyle. 1998a. Evidence for origins of polyploidy ofOxalis tuberosa from chloroplast-expressed glutamine synthetase. Amer. J. Bot. 85: 125 (abstract).CrossRefGoogle Scholar
  13. ——. 1998b. Origins of domestication and polyploidy in oca (Oxalis tuberosa: Oxalidaceae): nrDNA ITS data. Amer. J. Bot. 85: 975–985.CrossRefGoogle Scholar
  14. ——. 1999. Chloroplast-expressed glutamine synthetase (ncpGS): Potential utility for phylogenetic studies with an example fromOxalis (Oxalidaceae). Molec. Phylogenet. & Evol. 12: 310–319.CrossRefGoogle Scholar
  15. ESRI. 1992–1997. Arc View GIS, version 3.0a. Environmental Systems Research Institute, Redlands, CA.Google Scholar
  16. Favarger, C. &K. Huynh. 1965. Chromosome number reports, IV. Taxon 14: 86–92.Google Scholar
  17. Goldstein, P. Z., R. DeSalle, G. Amato &A. P. Vogler. 2000. Conservation genetics at the species boundary. Conservation Biol. 14: 120–131.CrossRefGoogle Scholar
  18. Goloboff, P. 1998. NONA computer program. Distributed by the author, Buenos Aires, Argentina.Google Scholar
  19. Graves, G. R. 1988. Linearity of geographic range and its possible effect on the population structure of Andean birds. Auk 105: 47–52.Google Scholar
  20. Gregory-Wodzicki, K. M. 2000. Uplift history of the Central and Northern Andes: A review. Geol. Soc. Amer. Bull. 112: 1091–1105.CrossRefGoogle Scholar
  21. Harlan, J. R. 1976. Genetic resources in wild relatives of crops. Crop Sci. (Madison) 16: 329–333.Google Scholar
  22. IUCN. 2001. IUCN Red List categories and criteria: Version 3.1. IUCN Species Survival Commission. IUCN, Gland, Switzerland, and Cambridge, England. http://www.iucn.org/themes/ssc/redlists/ redlistcatsenglish.pdf.Google Scholar
  23. Jørgensen, P. M. &S. León-Yánez (eds.). 1999. Catalogue of the vascular plants of Ecuador. Monogr. Syst. Bot., 75. Missouri Bot. Gard., Saint Louis.Google Scholar
  24. Knapp, S. 2002. Assessing patterns of plant endemism in neotropical uplands. Bot. Rev. (Lancaster) 68: 22–37.CrossRefGoogle Scholar
  25. Knuth, R. 1930. Oxalidaceae. Pp. 130: 1–481in A. Engler (ed.), Das Pflanzenreich IV; Regni vegetabilis conspectus. W. Engelmann, Leipzig.Google Scholar
  26. — 1931. Oxalidaceae novae, post editionem monographiae meae (a. 1930) detectae. Repert. Spec. Nov. Regni Veg. 29: 213–219.Google Scholar
  27. — 1935. Oxalidaceae 2. Repert. Spec. Nov. Regni Veg. 38: 194–199.Google Scholar
  28. — 1936. Oxalidaceae 3. Repert. Spec. Nov. Regni Veg. 40: 289–293.Google Scholar
  29. — 1940. Oxalidaceae 4. Repert. Spec. Nov. Regni Veg. 48: 1–4.Google Scholar
  30. Lourteig, A. 1981. Oxalidaceae in flora of Panamá. Ann. Missouri Bot. Gard. 67: 823–850.Google Scholar
  31. — 1988. Oxalidaceae. Fl. Patagónica 8: 1–29.Google Scholar
  32. — 2000.Oxalis L. subgéneroMonoxalis (Small) Lourt.,Oxalis yTrifidus Lourt. Bradea 7: 201–629.Google Scholar
  33. Macbride, J. F. 1949. Flora of Peru: Oxalidaceae. Field Mus. Nat. Hist., Bot. Ser. 13: 544–608.Google Scholar
  34. Mathew, P. M. 1958. Cytology of Oxalidaceae. Cytologia 23: 200–210.Google Scholar
  35. Medina H., Medina, T. C. 1994. Contaje cromosómico de la oca (Oxalis tuberosa Molina) conservada in vitro. Thesis. Universidad Nacional del Centro del Perú, Huancayo.Google Scholar
  36. Miller, J. T. &D. M. Spooner. 1999. Collapse of species boundaries in the wild potatoSolanum brevicaule complex (Solanaceae,S. sect.Petota): molecular data. Pl. Syst. Evol. 214: 103–130.CrossRefGoogle Scholar
  37. National Research Council. 1989. Lost crops of the Incas: Little-known plants of the Andes with promise for worldwide cultivation. Natl. Acad. Press, Washington, DC.Google Scholar
  38. Nixon, K. C. 1996. Clados computer program, version 17. Distributed by the author, Ithaca, NY.Google Scholar
  39. — 1999. Winclada computer program (BETA), version 0.9.9 Published by the author, Ithaca, NY.Google Scholar
  40. Paterson, A. H., S. D. Tanksley &M. E. Sorrells. 1991. DNA markers in plant improvement. Advances Agron. 46: 39–90.CrossRefGoogle Scholar
  41. Prance, G. T. (ed.). 1982. Biological diversification in the Tropics. Columbia Univ. Press, New York.Google Scholar
  42. Salter, T. M. 1944. The genusOxalis in South Africa: A taxonomic revision. J. S. African Bot. (Suppl. 1): 1–355.Google Scholar
  43. Simpson, B. B. 1975. Pleistocene changes in the flora of the high tropical Andes. Paleobiology 1: 273–294.Google Scholar
  44. Tanksley, S. D. &S. R. McCouch. 1997. Seed banks and molecular maps: Unlocking genetic potential from the wild. Science 277: 1063–1066.PubMedCrossRefGoogle Scholar
  45. Taylor, D. W. 1991. Paleobiogeographic relationships of Andean angiosperms of Cretaceous to Pliocene age. Palaeogeogr. Palaeoclimatol. Palaeoecol. 88: 69–84.CrossRefGoogle Scholar
  46. Terborgh, J. &B. Winter. 1983. A method for siting parks and reserves with special reference to Colombia and Ecuador. Biol. Conservation 27: 45–58.CrossRefGoogle Scholar
  47. Tosto, D. S. &H. E. Hopp. 1996. Sequence analysis of the 5.8S ribosomal DNA and internal transcribed spacers (ITS1 and 1TS2) from five species of theOxalis tuberosa alliance. DNA Sequence 6: 361–364.PubMedCrossRefGoogle Scholar
  48. Valencia, R., N. Pitman, S. León-Yánez &P. M. Jergensen (eds.). 2000. Libro rojo de las plantas endémicas del Ecuador 2000. Herbario QCA, Pontificia Universidad Católica del Ecuador, Quito.Google Scholar
  49. Valladolid, A. 1996. Niveles de ploidía de la oca (Oxalis tuberosa Mol.) y sus parientes silvestres. Thesis, Universidad Nacional Agraria La Molina, Lima.Google Scholar
  50. -,C. Arbizu & D. Talledo. 1994. Niveles de ploidía de la oca (Oxalis tuberosa Mol.) y sus parientes silvestres. Agro Sur [Universidad Austral de Chile, Facultad de Ciencias Agrarias] 22 (número especial): 11–12.Google Scholar
  51. Van den Berg, R. G., J. T. Miller, M. L. Ugarte, J. P. Kardolus, J. Villand, J. Nienhuis &D. M. Spooner. 1998. Collapse of morphological species in the wild potatoSolanum brevicaule complex (Solanaceae: sect.Petota). Amer. J. Bot. 85: 92–109.CrossRefGoogle Scholar
  52. Van der Hammen, T. 1974. The Pleistocene changes of vegetation and climate in tropical South America. J. Biogeogr. 1: 3–26.CrossRefGoogle Scholar
  53. Vinueza V., J. F. 1997. Evaluación y caracterización de 20 entradas de oca (Oxalis tuberosa Molina) recolectadas en Ecuador. Thesis, Universidad Central del Ecuador, Cutuglahua, Pichincha.Google Scholar
  54. Vuilleumier, B. B. 1971. Pleistocene changes in the fauna and flora of South America. Science 173: 771–780.PubMedCrossRefGoogle Scholar
  55. Weigend, M. 2002. Observations on the biogeography of the Amotape-Huancabamba zone in northern Peru. Bot. Rev. (Lancaster): 68: 38–54.CrossRefGoogle Scholar
  56. Young, K. R. 1992. Biogeography of the montane forest zone of the eastern slopes of Peru. Mem. Mus. Hist. Nat. “Javier Prado” 21: 119–140.Google Scholar
  57. — 1995. Biogeographical paradigms useful for the study of tropical montane forests and their biota. Pp. 79–87in S. P. Churchill, H. Balslev, E. Forero & J. L. Luteyn (eds.), Biodiversity and conservation of neotropical montane forests. New York Bot. Gard., Bronx.Google Scholar

Copyright information

© The New York Botanical Garden 2002

Authors and Affiliations

  • Eve Emshwiller
    • 1
  1. 1.Botany DepartmentField MuseumChicagoUSA

Personalised recommendations