Skip to main content
Log in

What do red and yellow autumn leaves signal?

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

The widespread phenomenon of red and yellow autumn leaves has recently attracted considerable scientific attention. The fact that this phenomenon is so prominent in the cooler, temperate regions and less common in warmer climates is a good indication of a climate-specific effect. In addition to the putative multifarious physiological benefits, such as protection from photoinhibition and photo-oxidation, several plant/animal interaction functions for such coloration have been proposed. These include (1) that the bright leaf colors may signal frugivores about ripe fruits (fruit flags) to enhance seed dispersal; (2) that they signal aphids that the trees are well defended (a case of Zahavi’s handicap principle operating in plants); (3) that the coloration undermines herbivore insect camouflage; (4) that they function according to the “defense indication hypothesis,” which states that red leaves are chemically defended because anthocyanins correlate with various defensive compounds; or (5) that because sexual reproduction advances the onset of leaf senescence, the pigments might indicate to sucking herbivores that the leaves have low amounts of resources. Although the authors of hypotheses 3, 4, and 5 did not say that bright autumn leaves are aposematic, since such leaves are chemically defended, unpalatable, or both, we suggest that they are indeed aposematic. We propose that in addition to the above-mentioned hypotheses, autumn colors signal to herbivorous insects about another defensive plant property: the reliable, honest, and critical information that the leaves are about to be shed and may thus cause their mortality. We emphasize that all types of defensive and physiological functions of autumn leaves may operate simultaneously.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Archetti, M. 2000. The origin of autumn colours by coevolution. J. Theor. Biol. 205: 625–630.

    Article  PubMed  CAS  Google Scholar 

  • —— 2007a. Autumn colours and the nutritional translocation hypothesis: a theoretical assessment. J. Theor. Biol. 244:714–721.

    Article  PubMed  CAS  Google Scholar 

  • —— 2007b. Colour preference as evidence for the theories on the evolution of autumn colours. J. Theor. Biol. 245: 595–596.

    Article  PubMed  Google Scholar 

  • -- & S. P. Brown. 2004. The coevolution theory of autumn colours. Proc. Roy. Soc. London, Ser.

  • ——. 2005. A test of the coevolution theory of autumn colours: colour preference ofRhopalosiphum padi on Prunus padus. Oikos 110: 339–343.

    Article  Google Scholar 

  • Brown, S. P. 2005. A view from Mars. Pp. 350–356in M. Ridley (ed.). Narrow roads of gene land—the collected papers of W. D. Hamilton volume 3—last words. Oxford University Press, Oxford.

    Google Scholar 

  • Chalker-Scott, L. 1999. Environmental significance of anthocyanins in plant stress responses. Photochem. & Photobiol. 70: 1–9.

    Article  CAS  Google Scholar 

  • Chittka, L. &T. G. Döring. 2007. Are autumn foliage colors red signals to aphids? PLoS Biol. 5: 1640–1644.

    CAS  Google Scholar 

  • Close, D. C. &C. L. Beadle. 2003. The ecophysiology of foliar anthocyanin. Bot. Rev. 69: 149–161.

    Article  Google Scholar 

  • Cook, A. D., P. R. Atsatt & C.A. Simon. 1971. Doves and dove weed: multiple defenses against avian predation. BioScience 21: 277–281.

    Article  Google Scholar 

  • Cott, H. B. 1940. Adaptive coloration in animals. Methuen & Co., London.

    Google Scholar 

  • Diamond, J. 2005. Collapse. How societies choose to fail or succeed. Viking, New York.

    Google Scholar 

  • Dixon, A. F. G. 1997. Aphid ecology. An optimization approach. Chapman and Hall, London.

    Google Scholar 

  • Edmunds, M. &J. Grayson. 1991, Camouflage and selective predation in caterpillars of the poplar and eyed hawkmoths (Laothoe populi andSmerinthus ocellata). Biol. J. Linn. Soc. 42: 467–480.

    Article  Google Scholar 

  • Endler, J. A. 1984. Progressive background matching in moths, and a quantitative measure of crypsis. Biol. J. Linn. Soc. 22: 187–231.

    Article  Google Scholar 

  • Facelli, J. M. 1993. Experimental evaluation of the foliar flag hypothesis using fruits ofRhus glabra (L.). Oecologia 93: 70–72.

    Google Scholar 

  • Faegri, K. &L. van der Pijl. 1979. The principles of pollination ecology. Ed. 3. Pergamon Press, Oxford.

    Google Scholar 

  • Faeth, S. H., E. F. Connor &D. Simberloff. 1981. Early leaf abscission: a neglected source of mortality for folivores. Amer. Naturalist 117: 409–415.

    Article  Google Scholar 

  • Feild, T. S., D. W. Lee &N. M. Holbrook. 2001. Why leaves turn red in autumn. The role of anthocyanins in senescing leaves of red-osier dogwood. Pl. Physiol. 127: 566–574.

    Article  CAS  Google Scholar 

  • Fineblum, W. L. M. D. Rausher. 1997. Do floral pigmentation genes also influence resistance to enemies? TheW locus inIpomoea purpurea. Ecology 78: 1646–1654.

    Google Scholar 

  • Furuta, K. 1986. Host preference and population dynamics in an autumnal population of the maple aphid,Periphyllus californiensis Shinji (Homoptera, Aphididae). J. Appl. Entomol. 102: 93–100.

    Article  Google Scholar 

  • Glinwood, R. &J. Pettersson. 2000. Movement by mating females of a host alternating aphid: a response to leaf fall. Oikos 90: 43–49.

    Article  Google Scholar 

  • Gould, K. S. 2004. Nature’s Swiss army knife: the diverse protective roles of anthocyanins in leaves. J. Biomedicine & Biotechnol. 2004(5): 314–320.

    Article  Google Scholar 

  • --,D. W. Lee & J. A. Callow (eds.). 2002a. Anthocyanins in leaves. Advances Bot. Res. 37.

  • Gould, K. S., S. O. Neill &T. C. Vogelmann. 2002b. A unified explanation for anthocyanins in leaves? Advances Bot. Res. 37: 167–192.

    Article  CAS  Google Scholar 

  • Grafen, A. 1990. Biological signals as handicaps. J. Theor. Biol. 144: 517–546.

    Article  PubMed  CAS  Google Scholar 

  • Grubb, P. J. 1992. A positive distrust in simplicity—lessons from plant defences and from competition among plants and among animals. J. Ecol. 80: 585–610.

    Article  Google Scholar 

  • Hagen, S. B., I. Folstad &S. W. Jakobsen. 2003. Autumn colouration and herbivore resistance in mountain birch(Betula pubescens). Ecol. Letters 6: 807–811.

    Article  Google Scholar 

  • ——. 2004. Autumn coloration as a signal of tree condition. Proc. Roy. Soc. London, Ser. B 271 (Suppl.): S184-S185.

    Article  Google Scholar 

  • Hamilton, W. D. &S. P. Brown. 2001. Autumn tree colours as a handicap signal. Proc. Roy. Soc. London, Ser. B 268: 1489–1493.

    Article  CAS  Google Scholar 

  • Harborne, J. B. 1982. Introduction to ecological biochemistry. Academic Press, London.

    Google Scholar 

  • Hinton, H. E. 1973. Natural deception. Pp. 97–159in R. L. Gregory & E. H. Gombrich (eds.), Illusion in nature and art. Duckworth, London.

    Google Scholar 

  • Hoch, W. A., E. L. Zeldin &B. H. McCown. 2001. Physiological significance of anthocyanins during autumnal leaf senescence. Tree Physiol. 21: 1–8.

    PubMed  CAS  Google Scholar 

  • ——. 2003. Resorption protection. Anthocyanins facilitate nutrient recovery in autumn by shielding leaves from potentially damaging light levels. Pl. Physiol. 133: 1296–1305.

    Article  CAS  Google Scholar 

  • Holopainen, J. K. &P. Peltonen. 2002. Bright autumn colours of deciduous trees attract aphids: nutrient retranslocation hypothesis. Oikos 99: 184–188.

    Article  Google Scholar 

  • Karban, R. 2007. Deciduous leaf drop reduces insect herbivory. Oecologia 153: 81–88.

    Article  PubMed  Google Scholar 

  • Kessler, A. &I. T. Baldwin. 2001. Defensive function of herbivore induced plant volatile emissions in nature. Science 291: 2141–2144.

    Article  PubMed  CAS  Google Scholar 

  • Kettlewell, B. 1973. The evolution of melanism. Clarendon Press, Oxford.

    Google Scholar 

  • Kozlowski, T. T. &S. G. Pallardy. 1997. Physiology of woody plants. Ed. 2. Academic Press, San Diego.

    Google Scholar 

  • ——. 1991. The physiological ecology of woody plants. Academic Press, San Diego.

    Google Scholar 

  • Lachmann, M. L., S. Számadó &C. T. Bergstrom. 2001. Cost and conflict in animal signals and human language. Proc. Natl. Acad. Sci. U.S.A. 98: 13189–13194.

    Article  PubMed  CAS  Google Scholar 

  • Lee, D. W. 2002. Anthocyanins in autumn leaf senescence. Advances Bot. Res. 37: 147–165.

    Article  CAS  Google Scholar 

  • ——. 2002a. Why leaves turn red. Amer. Sci. 90: 524–531.

    Google Scholar 

  • —— & —— 2002b. Anthocyanins in leaves and other vegetative organs: an introduction. Advances Bot. Res. 37: 1–16.

    Article  CAS  Google Scholar 

  • ——. 2003. Pigment dynamics and autumn leaf senescence in a New England deciduous forest, eastern USA. Ecol. Res. 18: 677–694.

    Article  CAS  Google Scholar 

  • Lev-Yadun, S. 2001. Aposematic (warning) coloration associated with thorns in higher plants. J. Theor. Biol. 210: 385–388.

    Article  PubMed  CAS  Google Scholar 

  • —— 2003a. Weapon (thorn) automimicry and mimicry of aposematic colorful thorns in plants. J. Theor. Biol. 244: 183–188.

    Article  Google Scholar 

  • —— 2003b. Why do some thorny plants resemble green zebras? J. Theor. Biol. 244: 483–489.

    Article  Google Scholar 

  • —— 2006. Defensive coloration in plants: a review of current ideas about anti-herbivore coloration strategies. Pp. 292–299in J. A. Teixeira da Silva (ed.), Floriculture, ornamental and plant biotechnology: advances and topical issues. Vol. IV. Global Science Books, London.

    Google Scholar 

  • ——. 2002. Defensive ant, aphid and caterpillar mimicry in plants. Biol. J. Linn. Soc. 77: 393–398.

    Article  Google Scholar 

  • ——. 2004. When may green plants be aposematic? Biol. J. Linn. Soc. 81: 413–416.

    Article  Google Scholar 

  • ——. 2002. Colour patterns in vegetative parts of plants deserve more research attention. Trends Plant Sci. 7: 59–60.

    Article  PubMed  CAS  Google Scholar 

  • ——, —— &G. Ne’eman. 2004. Plant coloration undermines herbivorous insect camouflage. BioEssays 26: 1126–1130.

    Article  PubMed  Google Scholar 

  • Majerus, M. E. N. 1998. Melanism. Evolution in action. Oxford University Press, Oxford.

    Google Scholar 

  • Matile, P. 2000. Biochemistry of Indian summer: physiology of autumnal leaf coloration. Exp. Gerontol. 35:145–158.

    Article  PubMed  CAS  Google Scholar 

  • Merilaita, S. 2003. Visual background complexity facilitates the evolution of camouflage. Evolution 57: 1248–1254.

    PubMed  Google Scholar 

  • ——. 1999. Optimization of cryptic coloration in heterogeneous habitat. Biol. J. Linn. Soc. 67: 151–161.

    Article  Google Scholar 

  • Midgley, J. J., M. A. Botha &D. Balfour. 2001. Patterns of thorn length, density, type and colour in African acacias. African J. Range Forage Sci. 18: 59–61.

    Google Scholar 

  • Ougham, H. J., P. Morris &H. Thomas. 2005. The colors of autumn leaves as symptoms of cellular recycling and defenses against environmental stresses. Curr. Topics Developm. Biol. 66: 135–160.

    Article  CAS  Google Scholar 

  • Purser, B. 2003. Jungle bugs: masters of camouflage and mimicry. Firefly Books, Toronto.

    Google Scholar 

  • Ridley, H. N. 1930. The dispersal of plants throughout the world. L. Reeve & Co., Ashford, UK.

    Google Scholar 

  • Rolshausen, G. &H. M. Schaefer. 2007. Do aphids paint the tree red (or yellow) - can herbivore resistance or photoprotection explain colourful leaves in autumn? Pl. Ecol. 191: 77–84.

    Article  Google Scholar 

  • Rubino, D. L. &B. C. McCarthy. 2004. Presence of aposematic (warning) coloration in vascular plants of southeastern Ohio. J. Torrey Bot. Soc. 131: 252–256.

    Article  Google Scholar 

  • Ruxton, G. D., T. N. Sherratt &M. P. Speed. 2004. Avoiding attack. The evolutionary ecology of crypsis, warning signals & mimicry. Oxford University Press, Oxford.

    Google Scholar 

  • Schaefer, H. M. &K. S. Gould. 2007. Modelling the evolution of leaf colouration with binary assumptions is barking up the wrong tree. J. Theor. Biol. 249: 638–639.

    Article  PubMed  Google Scholar 

  • ——. 2006. Plants on red alert: do insects pay attention? BioEssays 28: 65–71.

    Article  PubMed  Google Scholar 

  • —— & —— 2007. Aphids do not attend to leaf colour as visual signal, but to the handicap of reproductive investment. Biol. Lett. 3: 1–4.

    Article  PubMed  Google Scholar 

  • —— &D. M. Wilkinson. 2004. Red leaves, insects and coevolution: a red herring? Trends Ecol. Evol. 19: 616–618.

    Article  PubMed  Google Scholar 

  • —— &D. J. Levey. 2004. How plant-animal interactions signal new insights in communication. Trends Ecol. Evol. 19: 577–584.

    Article  Google Scholar 

  • Sherratt, T. N., D. M. Wilkinson &R. S. Bain. 2005. Explaining Dioscorides’ “double difference”: why are some mushrooms poisonous, and do they signal their unprofitability? Amer. Naturalist 166: 767–775.

    Article  Google Scholar 

  • Sinkkonen, A. 2006a. Sexual reproduction advances autumn leaf colours in mountain birch(Betula pubescens ssp.czerepanovii). J. Evol. Biol. 19: 1722–1724.

    Article  PubMed  CAS  Google Scholar 

  • ——. 2006b. Do autumn leaf colours serve as a reproductive insurance against sucking herbivores? Oikos 113: 557–562.

    Article  Google Scholar 

  • Speed, M. P. &G. D. Ruxton. 2005. Warning displays in spiny animals: one (more) evolutionary route to aposematism. Evolution 59: 2499–2508.

    PubMed  Google Scholar 

  • Stiles, E. W. 1982. Fruit flags: Two hypotheses. Amer. Naturalist 120: 500–509.

    Article  Google Scholar 

  • Van Bael, S. A., J. D. Brawn &S. K. Robinson. 2003. Birds defend trees from herbivores in a Neotropical forest canopy. Proc. Natl. Acad. Sci. U.S.A. 100: 8304–8307.

    Article  PubMed  CAS  Google Scholar 

  • Weiss, M. R. 1995. Floral colour change: a widespread functional convergence. Amer. J. Bot. 82: 167–195.

    Article  Google Scholar 

  • White, T. C. R. 2003. Nutrient retranslocation hypothesis: a subset of the flush-feeding/senescence-feeding hypothesis. Oikos 103: 217.

    Article  Google Scholar 

  • Wickler, W. 1968. Mimicry in plants and animals. Weidenfeld and Nicolson, London.

    Google Scholar 

  • Wilkinson, D. M., T. N. Sherratt, D. M. Phillip, S. D. Wratten, A. F. G. Dixon &A. J. Young. 2002. The adaptive significance of autumn leaf colours. Oikos 99: 402–407.

    Article  Google Scholar 

  • Willson, M. F. &W. G. Hoppes. 1986. Foliar ‘flags’ for avian frugivores: signal or serendipity? Pp. 55–69in A. Estrada & T. H. Fleming (eds.), Frugivores and seed dispersal. Dr. W. Junk, Dordrecht.

    Google Scholar 

  • —— &C. J. Whelan. 1990. The evolution of fruit color in fleshy-fruited plants. Amer. Naturalist 136:790–809.

    Article  Google Scholar 

  • Yamasaki, H. 1997. A function of colour. Trends Pl. Sci. 2: 7–8.

    Article  Google Scholar 

  • Zahavi, A. 1975. Mate selection - A selection for a handicap. J. Theor. Biol. 53: 205–214.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1977. The cost of honesty (further remarks on the handicap principle). J. Theor. Biol. 67: 603–605.

    Article  PubMed  CAS  Google Scholar 

  • ——. 1987. The theory of signal selection and some of its implications. Pp. 305–327in V. P. Delfino (ed.), International Symposium of Biological Evolution. Adriatica Editrica, Bari, Italy.

    Google Scholar 

  • ——. 1997. The handicap principle: a missing piece of Darwin’s puzzle. Oxford University Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lev-Yadun, S., Gould, K.S. What do red and yellow autumn leaves signal?. Bot. Rev 73, 279–289 (2007). https://doi.org/10.1663/0006-8101(2007)73[279:WDRAYA]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2007)73[279:WDRAYA]2.0.CO;2

Keywords

Navigation