Skip to main content
Log in

Morphology and angiosperm systematics in the molecular era

  • Published:
The Botanical Review Aims and scope Submit manuscript

Abstract

Several ways in which morphology is used in systematic and evolutionary research in angiosperms are shown and illustrated with examples: 1) searches for special structural similarities, which can be used to find hints for hitherto unrecognized relationships in groups with unresolved phylogenetic position; 2) cladistic studies based on morphology and combined morphological and molecular analyses; 3) comparative morphological studies in new, morphologically puzzling clades derived from molecular studies; 4) studies of morphological character evolution, unusual evolutionary directions, and evolutionary lability based on molecular studies; and 5) studies of organ evolution. Conclusions: Goals of comparative morphology have shifted in the present molecular era. Morphology no longer plays the primary role in phylogenetic studies. However, new opportunities for morphology are opening up that were not present in the premolecular era: 1) phylogenetic studies with combined molecular and morphological analyses; 2) reconstruction of the evolution of morphological features based on molecularly derived cladograms; 3) refined analysis of morphological features induced by inconsistencies of previous molecular and molecular phylogenetic analyses; 4) better understanding of morphological features by judgment in a wider biological context; 5) increased potential for including fossils in morphological analyses; and 6) exploration of the evolution of morphological traits by integration of comparative structural and molecular developmental genetic aspects (Evo-Devo); this field is still in its infancy in botany; its advancement is one of the major goals of evolutionary botany.

Zusammenfassung

Verschiedene Möglichkeiten der Anwendung morphologischer Studien in der Systematik und Evolutionsforschung der Angiospermen werden gezeigt und mit Beispielen illustriert: 1) Suche nach aussergewöhnlichen morphologischen Ähnlichkeiten, die verwendet werden können als Anhaltspunkte für potentielle unerkannte phylogenetische Beziehungen bei Taxa mit noch wenig gesicherter Stellung; 2) kladistische Untersuchungen basierend auf kombinierten morphologischen und molekularen Analysen; 3) vergleichend-morphologische Untersuchungen in aufgrund von molekularen Analysen neuerkannten, morphologisch wenig untersuchten Clades; 4) Untersuchungen von morphologischer Merkmalsevolution, ungewöhnlichen evolutiven Richtungen und evolutiver Labilität, die aus molekularen Untersuchungen resultieren; 5) Untersuchungen der Evolution von Organen. Zukunftsaussichten: Morphologie spielt heute nicht mehr die Hauptrolle in der phylogenetischen Rekonstruktion. Es eröffnen sich jedoch neue Möglichkeiten für die Morphologie, die in der prämolekularen Zeit nicht vorhanden waren: 1) phylogenetische Studien basierend auf der Kombination von morphologischen und molekularen Datensätzen; 2) Rekonstruktion der Evolution morphologischer Eigenschaften basierend auf molekularen Kladogrammen; 3) verfeinerte Analysen morphologischer Eigenschaften in Fällen, wo morphologische und molekulare phylogenetische Analysen zu abweichenden Resultaten geführt haben; 4) besseres Verständnies morphologischer Eigenschaften in einem erweiterten biologischen Kontext; 5) vermehrte Verwendungsmöglichkeit von Fossilien; 6) Integration von vergleichend morphologischen und molekularen entwicklungsgenetischen Aspekten (Evo-Devo); diese Forschungsrichtung steht in der Botanik erst am Anfang; ihre Förderung ist von besonderem Interesse.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature Cited

  • Albach, D. C., P. S. Soltis, D. E. Soltis &R. G. Olmstead. 2001. Phylogenetic analysis of asterids based on sequences of four genes. Ann. Missouri Bot. Gard. 88: 163–212.

    Google Scholar 

  • APG (Angiosperm Phytogeny Group). 1998. An ordinal classification for the families of flowering plants. Ann. Missouri Bot. Gard. 85: 531–553.

    Google Scholar 

  • Bailey, I. W. 1956. The relationship betweenSphenostemon of New Caledonia andNouhuysia of New Guinea. J. Arnold Arbor. 37: 360–365.

    Google Scholar 

  • —. 1953. The morphology and relationships ofIdenburgia andNouhuysia. J. Arnold Arbor. 34: 77–85.

    Google Scholar 

  • Baillon, H. 1875a. Stirpes exoticae novae. Adansonia 11: 292–312.

    Google Scholar 

  • —. 1875b. Sur le nouveau genreSphenostemon. Bull. Mens. Soc. Linn. Paris 7: 53–54.

    Google Scholar 

  • Baker, E. G. 1921. Systematic account of the plants collected in New Caledonia and the Isle of Pines by Prof. R. H. Compton, M.A., in 1914, I. Dicotyledons. Polypetalae. J. Linn. Soc., Bot., 45: 264–325.

    Google Scholar 

  • Baum, D. A. &B. A. Whitlock. 1999. Genetic clues to petal evolution. Curr. Biol. 9: 525–527.

    Google Scholar 

  • Bernhard, A. &P. K. Endress. 1999. Androecial development and systematics in Flacourtiaceae s.l. Pl. Syst. Evol. 215: 141–155.

    Google Scholar 

  • Bradford, J. C. &R. W. Barnes. 2001. Phylogenetics and classification of Cunoniaceae (Oxalidales) using chloroplast DNA sequences and morphology. Syst. Bot. 26: 354–385.

    Google Scholar 

  • Bremer, B. &J.-F. Manen. 2000. Phylogeny and classification of the subfamily Rubioideae (Rubiaceae). Pl. Syst. Evol. 225: 43–72.

    CAS  Google Scholar 

  • —. 1995. Subfamilial and tribal relationships in the Rubiaceae based onrbcL sequence data. Ann. Missouri Bot. Gard. 82: 383–397.

    Google Scholar 

  • Bremer, K. 2000. Early Cretaceous lineages of monocot flowering plants. Proc. Natl. Acad. U.S.A. 97: 4707–4711.

    CAS  Google Scholar 

  • Caris, P., A. Vrijdaghs &E. Smets. 2001. Floral ontogenetic studies in the former Ebenales. 15. Internationales Symposium Biodiversität & Evolutionsbiologie, Ruhr-Universität Bochum, Germany. Poster.

    Google Scholar 

  • Chase, M. W., D. E. Soltis, R. G. Olmstead, D. Morgan, D. H. Les, B. D. Mishler, M. R. Duvall, R. A. Price, H. G. Hills, Y.-L. Qiu, K. A. Kron, J. H. Rettig, E. Conti, J. D. Palmer, J. R. Manhart, K. J. Sytsma, H. J. Michaels, W. J. Kress, K. G. Karol, W. D. Clark, M. Hedén, B. S. Gaut, R. K. Jansen, K.-J. Kim, C. F. Wimpee, J. F. Smith, G. R. Furnier, S. H. Strauss, Q.-Y. Xiang, G. M. Plunkett, P. S. Soltis, S. M. Swensen.S. E. Williams, P. A. Gadek, C. J. Quinn, L. E. Eguiarte, E. Golenberg, G. H. Learn Jr.,S. W. Graham, S. C. H. Barrett, S. Dayanandan &V. A. Albert. 1993. Phylogenetics of seed plants: An analysis of nucleotide sequences from the plastid generbcL. Ann. Missouri Bot. Gard. 80: 528–580.

    Google Scholar 

  • —. 2000. Higher-level classification in the angiosperms: New insights from the perspective of DNA sequence data. Taxon 49: 685–704.

    Google Scholar 

  • —. 2002. When in doubt, put it in the Flacourtiaceae: A molecular phylogenetic analysis based on plastidrbcL DNA sequences. Kew Bull. 57: 141–181.

    Google Scholar 

  • Coen, E. S. 1996. Floral symmetry. EMBO J. 15: 6777–6788.

    PubMed  CAS  Google Scholar 

  • Conti, E., A. Litt &K. J. Sytsma. 1996. Circumscription of Myrtales and their relationships to other rosids: Evidence fromrbcL sequence data. Amer. J. Bot. 83: 221–233.

    Google Scholar 

  • —. 1997. Interfamilial relationships in Myrtales: Molecular phylogeny and patterns of morphological evolution. Syst. Bot. 22: 629–647.

    Google Scholar 

  • Costello, A. &T. J. Motley. 2001. Molecular systematics ofTetraplasandra, Munroidendron andReynoldsia sandwicensis (Araliaceae) and the evolution of superior ovaries inTetraplasandra. Edinburgh J. Bot. 58: 229–242.

    Google Scholar 

  • Crane, P. R., E. M. Friis &K. R. Pedersen. 1995. The origin and early diversification of angiosperms. Nature 374: 27–33.

    CAS  Google Scholar 

  • Cronk, Q. C. B., R. M. Bateman &J. A. Hawkins (eds.). 2002. Developmental genetics and plant evolution. Taylor & Francis, London.

    Google Scholar 

  • Cronquist, A. 1981. An integrative system of classification of flowering plants. Columbia Univ. Press, New York.

    Google Scholar 

  • Cubas, P., C. Vincent &E. S. Coen. 1999. An epigenetic mutation responsible for natural variation in floral symmetry. Nature 401: 157–161.

    PubMed  CAS  Google Scholar 

  • Dahlgren, R. M. T. &K. Bremer. 1985. Major clades of the angiosperms. Cladistics 1: 349–368.

    Google Scholar 

  • —. 1985. The families of the monocotyledons: Structure, evolution, and taxonomy. Springer-Verlag, Berlin.

    Google Scholar 

  • Dickison, W. C. 1967–1970. Comparative morphological studies in Dilleniaceae. Respective parts published in J. Arnold Arbor. as follows: I. Wood anatomy, 48: 1–23; II. The pollen, 48: 231–240; III. The carpels, 49: 317–332; IV. Anatomy of the node and vascularization of the leaf, 50: 384–410; V. Leaf anatomy, 51: 89–113; VI. Stamens and young stem, 51: 403–422.

    Google Scholar 

  • —. 1975a. Studies on the floral anatomy of the Cunoniaceae. Amer. J. Bot. 62: 433–447.

    Google Scholar 

  • —. 1975b. Leaf anatomy of Cunoniaceae. Bot. J. Linn. Soc. 71: 275–294.

    Google Scholar 

  • —. 1977. Wood anatomy ofWeinmannia (Cunoniaceae). Bull. Torrey Bot. Club 104: 12–23.

    Google Scholar 

  • —. 1978. Comparative anatomy of Eucryphiaceae. Amer. J. Bot. 65: 722–735.

    Google Scholar 

  • —. 1979. A note on the wood anatomy ofDillenia (Dilleniaceae). IAWA Bull. 1979: 57–60.

    Google Scholar 

  • —. 1980. Diverse nodal anatomy of the Cunoniaceae. Amer. J. Bot. 67: 975–981.

    Google Scholar 

  • —. 1984. Fruits and seeds of the Cunoniaceae. J. Arnold Arboret. 65: 149–190.

    Google Scholar 

  • —. 1989. Comparisons of primitive Rosidae and Hamamelidae. Pp. 47–73in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Vol. 1. Introduction and “Lower” Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.

    Google Scholar 

  • —. 1993. Floral anatomy of the Styracaceae, including observations on intra-ovarian trichomes. Bot. J. Linn. Soc. 112: 223–255.

    Google Scholar 

  • —. 2000. Integrative plant anatomy. Academic Press, San Diego, CA.

    Google Scholar 

  • —. 1977. The morphology and relationships ofParacryphia (Paracryphiaceae). Blumea 23: 417–438.

    Google Scholar 

  • —. 1990. Developmental morphology of stipules and systematics of the Cunoniaceae and presumed allies, II. Taxa without interpetiolar stipules and conclusions. Bot. Helvet. 100: 75–95.

    Google Scholar 

  • —. 1978. Xylem anatomy ofHibbertia (Dilleniaceae) in relation to ecology and evolution. J. Arnold Arbor. 59: 32–49.

    Google Scholar 

  • Donoghue, M. J. 1994. Progress and prospects in reconstructing plant phylogeny. Ann. Missouri Bot. Gard. 81: 405–418.

    Google Scholar 

  • —. 1989a. Phylogenetic studies of seed plants and angiosperms based on morphological characters. Pp. 181–193in B. Fernholm, K. Bremer & H. Jörnvall (eds.), The hierarchy of life: Molecules and morphology in phylogenetic analysis. Excerpta Medica, Amsterdam and New York.

    Google Scholar 

  • — & —. 1989b. Phylogenetic analysis of angiosperms and the relationships of Hamamelidae. Pp. 17–45in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Vol. 1. Introduction and “Lower” Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.

    Google Scholar 

  • — & —. 2000. Seed plant phylogeny: Demise of the anthophyte hypothesis? Curr. Biol. 10: R106-R109.

    PubMed  CAS  Google Scholar 

  • —. 1992. The suitability of molecular and morphological evidence in reconstructing plant phylogeny. Pp. 340–368in P. S. Soltis, D. E. Soltis & J. J. Doyle (eds.), Molecular systematics of plants. Chapman & Hall, New York.

    Google Scholar 

  • —. 1989. The importance of fossils in phylogeny reconstruction. Annual Rev. Ecol. Syst. 20: 431–460.

    Google Scholar 

  • —. 1998. Phylogeny and evolution of flower symmetry in the Asteridae. Trends Pl. Sci. 3: 311–317.

    Google Scholar 

  • Doyle, J. A. 1969. Cretaceous angiosperm pollen of the Atlantic coastal plain and its evolutionary significance. J. Arnold Arbor. 50: 1–35.

    Google Scholar 

  • —. 2000. Morphological phylogenetic analysis of basal angiosperms: Comparison and combination with molecular data. Int. J. Pl. Sci. 161: S121-S153.

    CAS  Google Scholar 

  • —. 1991. Diversification of early angiosperm pollen in a cladistic context. Pp. 169–195in S. Blackmore & S. H. Barnes (eds.), Pollen and spores: Patterns of diversification. Syst. Assoc, Clarendon Press, Oxford.

    Google Scholar 

  • —. 1994. Integration of morphological and ribosomal RNA data on the origin of angiosperms. Ann. Missouri Bot. Gard. 81: 419–450.

    Google Scholar 

  • Doyle, J. J., J. A. Chappill, C. D. Bailey &T. Kajita. 2000. Towards a comprehensive phylogeny of legumes: Evidence fromrbcL sequences and non-molecular data. Pp. 1–20in P. S. Herendeen & A. Bruneau (eds.), Advances in legume systematics, Part 9. Roy. Bot. Gard., Kew.

    Google Scholar 

  • Drinnan, A. N., P. R. Crane &S. B. Hoot. 1994. Patterns of floral evolution in the early diversification of non-magnoliid dicotyledons (eudicots). Pl. Syst. Evol., Suppl. 8: 93–122.

    Google Scholar 

  • Endress, P. K. 1969. Gesichtspunkte zur systematischen Stellung der Eupteleaceen (Magnoliales). Ber. Schweiz. Bot. Ges. 79: 229–278.

    Google Scholar 

  • —. 1980. The reproductive structures and systematic position of the Austrobaileyaceae. Bot. Jahrb. Syst. 101: 393–433.

    Google Scholar 

  • —. 1986. Floral structure, systematics and phylogeny in Trochodendrales. Ann. Missouri Bot. Gard. 73: 297–324.

    Google Scholar 

  • —. 1989a. Aspects of evolutionary differentiation of the Hamamelidaceae and the lower Hamamelididae. Pl. Syst. Evol. 162: 193–211.

    Google Scholar 

  • —. 1989b. Phylogenetic relationships in the Hamamelidoideae. Pp. 227–248in P. R. Crane & S. Blackmore (eds.), Evolution, systematics, and fossil history of the Hamamelidae. Vol. 2. “Higher” Hamamelidae. Syst. Assoc., Clarendon Press, Oxford.

    Google Scholar 

  • —. 1994. Diversity and evolutionary biology of tropical flowers. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • —. 1995. Floral structure and evolution in Ranunculanae. Pp. 47–61in U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9. Springer-Verlag, Vienna.

    Google Scholar 

  • —. 1998.Antirrhinum and Asteridae-Evolutionary changes of floral symmetry. Symp. Ser. Soc. Exp. Biol. 53: 133–140.

    Google Scholar 

  • —. 1999. Symmetry in flowers: Diversity and evolution. Int. J. Pl. Sci. 160: S3-S23.

    Google Scholar 

  • —. 2001a. Evolution of floral symmetry. Curr. Opin. Pl. Biol. 4: 86–91.

    CAS  Google Scholar 

  • —. 2001b. The flowers in extant basal angiosperms and inferences on ancestral flowers. Int. J. Pl. Sci. 162: 1111–1140.

    Google Scholar 

  • — &A. Igersheim. 1999. Gynoecium diversity and systematics of the basal eudicots. Bot. J. Linn. Soc. 130: 305–393.

    Google Scholar 

  • — & —. 2000. The reproductive structures of the basal angiospermAmborella trichopoda (Amborellaceae). Int. J. Pl. Sci. 161: S237-S248.

    Google Scholar 

  • —. 1983. Floral structure and relationships of the Trimeniaceae (Laurales). J. Arnold Arbor. 64: 447–473.

    Google Scholar 

  • —. 1983. Convergent elaboration of apocarpous gynoecia in higher advanced dicotyledons (Sapindales, Malvales, Gentianales). Nord. J. Bot. 3: 293–300.

    Google Scholar 

  • —. 2000. Systematic plant morphology and anatomy—50 years of progress. Taxon 49: 401–434.

    Google Scholar 

  • Engler, A. 1930. Saxifragaceae. Pp. 74–226in A. Engler & K. Prantl (eds.), Die natürlichen Pflanzenfamilien, Vol. 18a. Ed. 2. W. Engelmann, Leipzig.

    Google Scholar 

  • Erbar, C. 1986. Untersuchungen zur Entwicklung der spiraligen Blüte vonStewartia pseudocamellia (Theaceae). Bot. Jahrb. Syst. 106: 391–407.

    Google Scholar 

  • Eyde, R. H. &C. C. Tseng. 1969. Flower ofTetrapiasandra gymnocarpa: Hypogyny with epigynous ancestry. Science 166: 506–508.

    PubMed  Google Scholar 

  • — & —. 1971. What is the primitive floral structure of Araliaceae? J. Arnold Arbor. 52: 205–239.

    Google Scholar 

  • Fay, M. F., B. Bremer, G. T. Prance, M. van der Bank, D. Bridson &M. W. Chase. 2000. PlastidrbcL sequence data showDialypetalanthus to be a member of Rubiaceae. Kew Bull. 55: 853–864.

    Google Scholar 

  • Friis, E. M., K. R. Pedersen &P. R. Crane. 1994. Angiosperm floral structures from the Early Cretaceous of Portugal. Pl. Syst. Evol., Suppl. 8: 31–49.

    Google Scholar 

  • —, — & —. 2000. Reproductive structure and organization of basal angiosperms from the Early Cretaceous (Barremian or Aptian) of Portugal. Int. J. Pl. Sci. 161: S169-S182.

    Google Scholar 

  • —, — & —. 2001. Fossil evidence of water lilies in the Early Cretaceous. Nature 410: 357–360.

    PubMed  CAS  Google Scholar 

  • Frohlich, M. W. &D. S. Parker. 2000. The mostly male theory of flower evolutionary origins: From genes to fossils. Syst. Bot. 25: 155–170.

    Google Scholar 

  • Gibbs, L. S. 1917. Dutch N.W. New Guinea: A contribution to the phytogeography and flora of the Arfak Mountains, & c. Taylor and Frances, London.

    Google Scholar 

  • Gilg, E. &E. Werdermann. 1925. Marcgraviaceae. Pp. 94–106in A. Engler & K. Prantl (eds.), Die natürlichen Pflanzenfamilien, Vol. 21. Ed. 2. W. Engelmann, Leipzig.

    Google Scholar 

  • Gustafsson, M. H. G. &V. A. Albert. 1999. Inferior ovaries and angiosperm diversification. Pp. 403–431in P. M. Hollingsworth, R. M. Bateman & R. J. Gornall (eds.), Molecular systematics and plant evolution. Taylor & Francis, London.

    Google Scholar 

  • Hallier, H. 1903. Über den Umfang, die Gliederung und die Verwandtschaft der Familie der Hamamelidaceen. Beih. Bot. Centralbl. 14: 247–260.

    Google Scholar 

  • Hawkins, J. A. 2000. A survey of primary homology assessment: Different botanists perceive and define characters in different ways. Pp. 22–53in R. Scotland & R. T. Pennington (eds.), Homology and systematics: Coding characters for phylogenetic analysis. Taylor & Francis, London.

    Google Scholar 

  • Henrickson, J. 1972. A taxonomic revision of the Fouquieriaceae. Aliso 7: 439–537.

    Google Scholar 

  • Hiepko, P. 1965. Vergleichend-morphologische und entwicklungsgeschichtliche Untersuchungen über das Perianth bei den Polycarpicae. Bot. Jahrb. Syst. 84: 359–508.

    Google Scholar 

  • Hirmer, M. 1918. Beiträge zur Morphologie der polyandrischen Blüten. Flora 110: 140–192.

    Google Scholar 

  • Hollingsworth, P. M., R. M. Bateman &R. J. Gornall (eds.). 1999. Molecular systematics and plant evolution. Taylor & Francis, London.

    Google Scholar 

  • Hoot, S. B. &P. R. Crane. 1995. Inter-familial relationships in the Ranunculidae based on molecular systematics. Pp. 119–131in U. Jensen & J. W. Kadereit (eds.), Systematics and evolution of the Ranunculiflorae. Pl. Syst. & Evol., Suppl. 9. Springer-Verlag, Vienna.

    Google Scholar 

  • Huber, K. 1980. Morphologische und entwicklungsgeschichtliche Untersuchungen an Blüten und Blütenständen von Solanaceen und vonNolana paradoxa Lindl. (Nolanaceae). Diss. Bot. 55: 1–252.

    Google Scholar 

  • Hufford, L. 1990. Androecial development and the problem of monophyly of Loasaceae. Canad. J. Bot. 68: 402–419.

    Google Scholar 

  • —. 1992. Rosidae and their relationships to other nonmagnoliid dicotyledons: A phylogenetic analysis using morphological and chemical data. Ann. Missouri Bot. Gard. 79: 218–248.

    Google Scholar 

  • —. 1997. A phylogenetic analysis of Hydrangeaceae based on morphological data. Int. J. Pl. Sci. 158: 652–672.

    Google Scholar 

  • —. 1992. A phylogenetic analysis of Cunoniaceae. Syst. Bot. 17: 181–192.

    Google Scholar 

  • —. 2001. A phylogenetic analysis of Hydrangeaceae based on sequences of the plastid genematK and their combination withrbcL and morphological data. Int. J. Pl. Sci. 162: 835–846.

    CAS  Google Scholar 

  • Hughes, N. F. &A. B. McDougall. 1987. Records of angiospermid pollen entry into the English Early Cretacous succession. Rev. Paleobot. Palynol. 50: 255–272.

    Google Scholar 

  • Igersheim, A., C. Puff, P. Leins &C. Erbar. 1994. Gynoecial development ofGaertnera Lam. and of presumably allied taxa of the Psychotrieae (Rubiaceae): Secondarily “superior” vs. inferior ovaries. Bot. Jahrb. Syst. 116: 401–414.

    Google Scholar 

  • Irish, V. F. &E. M. Kramer. 1998. Genetic and molecular analysis of angiosperm flower development. Advances Bot. Res. 28: 197–230.

    CAS  Google Scholar 

  • Jäger-Zürn, I. 1966. Infloreszenz- und blütenmorphologische, sowie embryologische Untersuchungen anMyrothamnus Welw. Beitr. Biol. Pflanzen 42: 241–271.

    Google Scholar 

  • Jérémie, J. 1997. Sphenostemonaceae. Pp. 3–21in P. Morat (ed.), Flore de la Nouvelle Calédonie, 21. Muséum National d’Histoire Naturelle, Paris.

    Google Scholar 

  • Juncosa, A. M. 1988. Floral development and character evolution in Rhizophoraceae. Pp. 83–101in P. Leins, S. C. Tucker & P. K. Endress (eds.), Aspects of floral development. J. Cramer, Berlin.

    Google Scholar 

  • Kappeier, G. 1995. Anlage des Androeciums bei einigen Vertretern der Hydrangeaceae. Abstr. 12. Symposium Morphologie, Anatomie und Systematik, Univ. of Mainz, Mainz.

    Google Scholar 

  • Kramer, E. M. &V. F. Irish. 1999. Evolution of genetic mechanisms controlling petal development. Nature 399: 144–148.

    PubMed  CAS  Google Scholar 

  • — & —. 2000. Evolution of the petal and stamen developmental programs: Evidence from comparative studies of the lower eudicots and basal angiosperms. Int. J. Pl. Sci. 161: S29-S40.

    Google Scholar 

  • Kubitzki, K., J. G. Rohwer &V. Bittrich (eds.). 1993. The families and genera of vascular plants. Vol. 2. Flowering plants, dicotyledons: Magnoliid, hamamelid, and caryophyllid families. Springer-Verlag, Berlin.

    Google Scholar 

  • Kuzoff, R. K., D. E. Soltis, L. Hufford &P. S. Soltis. 1999. Phylogenetic relationships withinLithophragma (Saxifragaceae): Hybridization, allopolyploidy, and ovary diversification. Syst. Bot. 24: 598–615.

    Google Scholar 

  • —. 2001. Structural homology and developmental transformations associated with ovary diversification inLithophragma (Saxifragaceae). Amer. J. Bot. 88: 196–205.

    Google Scholar 

  • Lauterbach, C. 1912. Guttiferae. Nova Guinea 8: 843–844.

    Google Scholar 

  • Leeuwenberg, A. J. M. &P. W. Leenhouts. 1980. Taxonomy [Loganiaceae]. Pp. 8–96in A. Engler & K. Prantl (eds.), Die natürlichen Pflanzenfamilien, Vol. 28b. Ed. 2. I. Duncker & Humblot, Berlin.

    Google Scholar 

  • Leins, P. 1972. Das zentrifugale Androeceum vonCouroupita guianensis (Lecythidaceae). Beitr. Biol. Pflanzen 48: 313–319.

    Google Scholar 

  • —. 1995. Das frühe Differenzierungsmuster in den Blüten vonSaruma henryi Oliv. (Aristolochiaceae). Bot. Jahrb. Syst. 117: 365–376.

    Google Scholar 

  • —. 1973. Entwicklungsgeschichtliche Studien an Loasaceen-Blüten. Oesterr. Bot. Z. 122: 145–165.

    Google Scholar 

  • Li, J.-H. &A. L. Bogle. 2001. A new suprageneric classification system of the Hamamelidoideae based on morphology and sequences of nuclear and chloroplast DNA. Harvard Pap. Bot. 5: 499–515.

    Google Scholar 

  • Magallón, S., P. R. Crane &P. S. Herendeen. 1999. Phylogenetic pattern, diversity, and diversification of eudicots. Ann. Missouri Bot. Gard. 86: 297–372.

    Google Scholar 

  • Matthews, M. L., P. K. Endress, J. Schönenberger &E. M. Friis. 2001. A comparison of floral structures of Anisophylleaceae and Cunoniaceae and the problem of their systematic position. Ann. Bot. (London) 88: 439–455.

    Google Scholar 

  • McDade, L. A., S. E. Masta, M. L. Moody &E. Waters. 2000. Phylogenetic relationships among Acanthaceae: Evidence from two genomes. Syst. Bot. 25: 106–121.

    Google Scholar 

  • Mennega, A. M. W. 1980. Anatomy of the secondary phloem [Loganiaceae]. Pp. 15–65in A. Engler & K. Prantl (eds.), Die natürlichen Pflanzenfamilien, Vol. 28b. Ed. 2. I. Duncker & Humblot, Berlin.

    Google Scholar 

  • Metcalfe, C. R. 1956. The taxonomic affinities ofSphenostemon in the light of the anatomy of its stem and leaf. Kew Bull. 1956: 249–253.

    Google Scholar 

  • Mohr, B. A. R. &E. M. Friis. 2000. Early angiosperms from the Lower Cretaceous Crato Formation (Brazil): A preliminary report. Int. J. Pl. Sci. 161: S155-S167.

    Google Scholar 

  • Möller, M., M. Clokie, P. Cubas &Q. C. B. Cronk. 1999. Integrating molecular phylogenies and developmental genetics. A Gesneriaceae case study. Pp. 375–402in P. M. Hollingsworth, R. M. Bateman & R. J. Gornall (eds.), Molecular systematics and plant evolution. Taylor & Francis, London.

    Google Scholar 

  • Moody, M. L. &L. Hufford. 2000. Floral ontogeny and morphology ofCevallia, Fuertesia, andGronovia (Loasaceae subfamily Gronovioideae). Int. J. Pl. Sci. 161: 869–883.

    Google Scholar 

  • —, —. 2001. Phylogenetic relationships of Loasaceae subfamily Gronovioideae inferred frommatK and ITS sequence data. Amer. J. Bot. 88: 326–336.

    CAS  Google Scholar 

  • Morley, B. &J.-M. Chao. 1977. A review ofCorylopsis (Hamamelidaceae). J. Arnold Arbor. 58: 382–414.

    Google Scholar 

  • Nandi, O. I., M. W. Chase &P. K. Endress. 1998. A combined cladistic analysis of angiosperms usingrbcL and nonmolecular data sets. Ann. Missouri Bot. Gard. 85: 137–212.

    Google Scholar 

  • Olmstead, R. G., B. Bremer, K. M. Scott &J. D. Palmer. 1993. A parsimony analysis of the Asteridae sensu lato based onrbcL sequences. Ann. Missouri Bot. Gard. 80: 700–722.

    Google Scholar 

  • Piesschaert, F., E. Robbrecht &E. Smets. 1997.Dialypetalanthus fuscescens Kuhlm. (Dialypetalanthaceae): The problematic taxonomic position of an Amazonian endemic. Ann. Missouri Bot. Gar. 84: 201–223.

    Google Scholar 

  • Plunkett, G. M. &P. P. Lowry II. 2001. Relationships among “ancient araliads” and their significance for the systematics of Apiales. Molec. Phylogenet. Evol. 19: 259–276.

    PubMed  CAS  Google Scholar 

  • —. 1997. Clarification of the relationship between Apiaceae and Araliaceae based onmatK andrbcL sequence data. Amer. J. Bot. 84: 565–580.

    CAS  Google Scholar 

  • Qiu, Y.-L., J. Lee, F. Bernasconi-Quadroni, D. E. Soltis, P. S. Soltis, M. Zanis.E. A. Zimmer, Z. Chen, V. Savolainen &M. W. Chase. 1999. The earliest angiosperms: Evidence from mitochondrial, plastid and nuclear genomes. Nature 402: 404–407.

    PubMed  CAS  Google Scholar 

  • Rao, T. A. &W. C. Dickison. 1985a. The veinsheath syndrome in Cunoniaceae, I.Pancheria Brongn. & Gris. Proc. Indian Acad. Sci. Pl. Sci. 95: 87–94.

    Google Scholar 

  • — & —. 1985b. The veinsheath syndrome in Cunoniaceae, II. The generaAcsmithia, Codia, Cunonia, Geissois, Pullea andWeinmannia. Proc. Indian Acad. Sci. Pl. Sci. 95: 247–261.

    Google Scholar 

  • Ree, R. H. &M. J. Donoghue. 1999. Inferring rates of change in flower symmetry in astend angiosperms. Syst. Biol. 48: 633–641.

    Google Scholar 

  • Reeves, P. A. &R. G. Olmstead. 1998. Evolution of novel morphological, ecological, and reproductive traits in a clade containingAntirrhinum. Amer. J. Bot. 85: 1047–1056.

    Google Scholar 

  • Robbrecht, E. 1988. Tropical woody Rubiaceae: Characteristic features and progressions: Contributions to a new subfamilial classification. Opera Bot. Belg. 1: 1–271.

    Google Scholar 

  • Roels, P., L. P. Ronse Decraene &E. F. Smets. 1997. A floral ontogenetic investigation of the Hydrangeaceae. Nord. J. Bot. 17: 235–254.

    Google Scholar 

  • Ronse Decraene, L. P., H. P. Linder, T. Diamini &E. F. Smets. 2001. Evolution and development of floral diversity of Melianthaceae, an enigmatic Southern African family. Int. J. Pl. Sci. 162: 59–82.

    Google Scholar 

  • Rury, P. M. &W. C. Dickison. 1977. Leaf venation patterns of the genusHibbertia (Dilleniaceae). J. Arnold Arbor. 58: 209–241.

    Google Scholar 

  • Rutishauser, R. &W. C. Dickison. 1989. Developmental morphology of stipules and systematics of the Cunoniaceae and presumed allies, I. Taxa with interpetiolar stipules. Bot. Helvet. 99: 147–169.

    Google Scholar 

  • —. 1998.Theligonum cynocrambe: Developmental morphology of a peculiar rubiaceous herb. Pl. Syst. Evol. 210: 1–24.

    Google Scholar 

  • Sanderson, M. J. &J. A. Doyle. 2001. Sources of error and confidence intervals in estimating the age of angiosperms fromrbcL and 18S rDNA data. Amer. J. Bot. 88: 1499–1516.

    CAS  Google Scholar 

  • Savolainen, V., M. F. Fay, D. C. Albach, A. Backlund, M. van der Bank, K. M. Cameron, S. A. Johnson, M. D. Lledó, J.-C. Pintaud, M. Powell, M. C. Sheahan, D. E. Soltis, P. S. Soltis, P. Weston, W. M. Whitten, K. J. Wurdack &M. W. Chase. 2000. Phylogeny of the eudicots: A nearly complete familial analysis based onrbcL gene sequences. Kew Bull. 55: 257–309.

    Google Scholar 

  • Schlechter, R. 1906. Beiträge zur Kenntnis der Flora von Neu-Kaledonien. Bot. Jahrb. Syst. 39: 1–274.

    Google Scholar 

  • Schmid, R. 1978. Actinidiaceae, Davidiaceae, and Paracryphiaceae: Systematic considerations. Bot. Jahrb. Syst. 100: 196–204.

    Google Scholar 

  • Schönenberger, J. &P. K. Endress. 1998. Structure and development of the flowers inMendoncia, Pseudocalyx, andThunbergia (Acanthaceae) and their systematic implications. Int. J. Pl. Sci. 159: 446–465.

    Google Scholar 

  • —. 2001. Cunoniaceae in the Cretaceous of Europe: Evidence from fossil flowers. Ann. Bot. (London) 88: 423–437.

    Google Scholar 

  • Schwarzbach, A. E. &R. E. Rickleffs. 2000. Systematic affinities of Rhizophoraceae and Anisophylleaceae, and intergeneric relationships within Rhizophoraceae, based on chloroplast DNA, nuclear ribosomal DNA, and morphology. Amer. J. Bot. 87: 547–564.

    CAS  Google Scholar 

  • Simpson, M. G. 1994. Reversal of ovary position in the Haemodoraceae and its adaptive significance. Amer. J. Bot. (Suppl.) 81(6): 185 (abstract).

    Google Scholar 

  • —. 1998. Reversal in ovary position from inferior to superior in the Haemodoraceae: Evidence from floral ontogeny. Int. J. Pl. Sci. 159: 466–479.

    Google Scholar 

  • Soltis, D. E., P. S. Soltis, D. L. Nickrent, L. A. Johnson, W. J. Hahn, S. B. Hoot, J. A. Sweere, R. K. Kuzoff, K. A. Kron, M. W. Chase, S. M. Swensen, E. A. Zimmer, S.-M. Chaw, L. J. Gillespie, W. J. Kress &K. J. Sytsma. 1997. Angiosperm phylogeny inferred from 18S ribosomal DNA sequences. Ann. Missouri Bot. Gard. 84: 1–49.

    Google Scholar 

  • —, —. 2000. Angiosperm phylogeny inferred from 18S rDNA,rbcL, andatpB sequences. Bot. J. Linn. Soc. 133: 381–461.

    Google Scholar 

  • —. 2001. Phylogenetic relationships and evolution inChrysosplenium (Saxifragaceae) based onmatK sequence data. Amer. J. Bot. 88: 883–893.

    Google Scholar 

  • —. 2002. Missing links: The genetic architecture of flowers and floral diversification. Trends Pl. Sci. 7: 22–31.

    CAS  Google Scholar 

  • Soltis, P. S. &D. E. Soltis. 1993. Ancient DNA: Prospects and limitations. New Zealand J. Bot. 31: 203–209.

    Google Scholar 

  • Stevens, P. F. 1991. Character states, morphological variation, and phylogenetic analysis: A review. Syst. Bot. 16: 553–583.

    Google Scholar 

  • —. 2000. On characters and characters states: Do overlapping and non-overlapping variation, morphology and molecules all yield data of the same value? Pp. 81–105in R. Scotland & R. T. Pennington (eds.), Homology and systematics: Coding characters for phylogenetic analysis. Taylor & Francis, London.

    Google Scholar 

  • Stevenson, D. W., J. D. Davis, J. V. Freudenstein, C. R. Hardy, M. P. Simmons &C. D. Specht. 2000. A phylogenetic analysis of the monocotyledons based on morphological and molecular character sets, with comments on the placement ofAcorus and Hydatellaceae. Pp. 17–24in K. L. Wilson & D. A. Morrison (eds.), Monocots: Systematics and evolution. CSIRO, Melbourne, Australia.

    Google Scholar 

  • Steyn, E. M. A., P. J. Robbertse &L. A. Coetzer. 1991. Intra-ovarian trichomes inBequaertiodendron magalismontanum: Location, origin, structure and possible function in the reproductive process. S. African J. Bot. 57: 191–197.

    Google Scholar 

  • Suessenguth, K. 1927. Über die GattungLennoa: Ein Beitrag zur Kenntnis exotischer Parasiten. Flora 122: 264–301.

    Google Scholar 

  • Sugiyama, M. 1991. Scanning electron microscopy observation on early ontogeny of the flower ofCamellia japonica L. J. Jap. Bot. 66: 295–299.

    Google Scholar 

  • Swamy, B. G. L. 1953. Comments onAscarina alticola Schlechter. Proc. Natl Inst. Sci. India 19: 143–147.

    Google Scholar 

  • Sytsma, K. J. &W. J. Hahn. 2000. Molecular systematics. Progr. Bot. 62: 307–339.

    Google Scholar 

  • —. 2001. Plant systematics in the next 50 years: Re-mapping the new frontier. Taxon 50: 713–732.

    Google Scholar 

  • Takhtajan, A. 1959. Die Evolution der Angiospermen. G. Fischer, Jena, Germany.

    Google Scholar 

  • —. 1997. Diversity and classification of flowering plants. Columbia Univ. Press, New York.

    Google Scholar 

  • Thome, R. F. 2000. The classification and geography of the flowering plants: Dicotyledons of the class Angiospermae (subclasses Magnoliidae, Ranunculidae, Caryophyllidae, Dilleniidae, Rosidae, Asteridae, and Lamiidae). Bot. Rev. (Lancaster) 66: 441–647.

    Google Scholar 

  • Tsou, C.-H. 1994. The embryology, reproductive morphology, and systematics of Lecythidaceae. Mem. New York Bot. Gard., 71. New York Bot. Gard., Bronx.

    Google Scholar 

  • —. 1998. Early floral development of Camellioideae (Theaceae). Amer. J. Bot. 85: 1531–1547.

    Google Scholar 

  • Tucker, S. C. &A. W. Douglas. 1994. Ontogenetic evidence and phylogenetic relationships among basal taxa of legumes. Pp. 11–32in I. K. Ferguson & S. C. Tucker (eds.), Advances in legume systematics. Part 6. Structural botany. Roy. Bot. Gard., Kew.

    Google Scholar 

  • — & —. 1996. Floral structure, development, and relationships of paleoherbs:Saruma, Cabomba, Lactoris, and selected Piperales. Pp. 141–175in D. W. Taylor & L. J. Hickey (eds.), Flowering plant origin, evolution and phylogeny. Chapman & Hall, New York.

    Google Scholar 

  • Upchurch, G. R., Jr. 1984. Cuticle evolution in Early Cretaceous angiosperms from the Potomac Group of Virginia and Maryland. Ann. Missouri Bot. Gard. 71: 522–550.

    Google Scholar 

  • Van Heel, W. A. 1987. Androecium development inActinidia chinensis andA. melanandra (Actinidiaceae). Bot. Jahrb. Syst. 109: 17–23.

    Google Scholar 

  • Van Steenis, C. G. G. J. 1950. Note onParacryphia Baker (Eucryphiaceae). Bull. Bot. Gard. Buitenzorg, ser. 3, 18: 459.

    Google Scholar 

  • —. 1952. Reduction of two endemic monotypic Papuan genera. Acta Bot. Neerl. 1: 93–98.

    Google Scholar 

  • —. 1955. Some notes on the flora of New Caledonia and reduction ofNouhuysia toSphenostemon. Svensk Bot. Tidskr. 49: 19–23.

    Google Scholar 

  • Vinnersten, A. &K. Bremer. 2001. Age and biogeography of major clades in Liliales. Amer. J. Bot. 88: 1695–1703.

    Google Scholar 

  • Vishenskaya, T. D. 1980a. Polymerous androecium and its development in the flower ofThea sinensis L. (Theaceae). Bot. Zhurn. (Moscow & Leningrad) 65: 39–50.

    Google Scholar 

  • —. 1980b. The development of the polymerous androecium inStuartia pseudocamellia (Theaceae). Bot. Zhurn. (Moscow & Leningrad) 65: 948–957.

    Google Scholar 

  • Von Balthazar, M. &P. K. Endress. 2002. Development of inflorescences and flowers in Buxaceae and the problem of perianth interpretation. Int. J. Pl. Sci. 163: 847–876.

    Google Scholar 

  • Von Hagen, K. B. &J. W. Kadereit. 2002. Phylogeny and flower evolution of the Swertiinae (Gentianaceae-Gentianeae): Homoplasy and the principle of variable proportions. Syst. Bot. 27: 548–572.

    Google Scholar 

  • Wanntorp, L., H.-E. Wanntorp, B. Oxelman &M. Källersjö. 2001. Phylogeny ofGunnera. Pl. Syst. Evol. 226: 85–107.

    CAS  Google Scholar 

  • Wen, J., G. M. Plunkett, A. D. Mitchell, S. J. Wagstaff. 2001. The evolution of Araliaceae: A phylogenetic analysis based on ITS sequences of nuclear ribosomal DNA. Syst. Bot. 26: 144–167.

    Google Scholar 

  • Wilkinson, H. P. 2000. A revision of the anatomy of Gunneraceae. Bot. J. Linn. Soc. 134: 233–266.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Endress, P.K. Morphology and angiosperm systematics in the molecular era. Bot. Rev 68, 545–570 (2002). https://doi.org/10.1663/0006-8101(2002)068[0545:MAASIT]2.0.CO;2

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1663/0006-8101(2002)068[0545:MAASIT]2.0.CO;2

Keywords

Navigation